برسسى آسيبِپذيرى لرزهاى و ارايه طرح مقاومسازیى مخازن نغتى فولادى

ياسر زارع'

هر

كليدواثهها: مقاومسازى، مخازن فولادى، آسيبپذيرى لرزهاى، كمانش پافيلى، كمانش الماسى

حر كت قائم نسبى جداره در سطح چى جلوگيرى شده اسـت، در
 از روى زمين بلند شود و بنابراين براى تحليل دقيق دينـاميكى آن يك آناليز غيرخطى لازم است. بدين ترتيـب جهـــي

 ساختگاهى تهيه شده و در تحليل طيفى از آن استفاده به عمل آمده است. طبق دسـتورالعمل ASCE جهــت ارزيـابى لـرزهاى
 ساختگاه با احتمال گذر • ادرصد در •ه سـال (دوره باز گـشت API 650 YVQ ضميمه E، استفاده از ميرايى 「 درصد براى مود ضـربانى و D| •

 ركوردهاى زلزله

 در ادامــه، مكــانيزمهــاى خرابــى مخــازن و و نتـايج حاصـا تحليلهاى صورت گرفته بر روى هر يكى از مخـازن ذكـر شـــهـ، در جدول (1) آورده شده است.

r- مكانيزمهاى خرابى مخازن

آسيبهاى وارده به مخـازن را مـىتـوان در قالـب هفـت معيـار

مى گردند.
r-ا - وازگونى
وقتى نسبت ارتفاع به قطر زيـاد مـىشـــود، پايـــارى مخــزن در

 اسـتفاده از ضوابــط ضـميمه E آيـيننامــه 650 API و و نـسبت M/[D $\left.{ }^{2}\left(W_{L}+W_{t}\right)\right]$

1- مقدمه
يكى از سازههاى بسيار مهمم كه كاربرد فراوانى در پالايشگاههاى

 مخزن فولادى از سه جزء اصلى تشكيل يافته است: بدنه، كف و

 مـىشـود. رفتـار دينـاميكى مخـازن، اولـين بـار توسـا توسـط هـازنر

 معرض شتاب جانبى ديناميكى قرار دارد، سيال از دو طريـــق بـر

 حركت نوسانى به ميزان قابل توجهى پايينتر از فر كانس حركت

 محقــق دانـششًاه كاليفرنيــا مقالــهاى تحــت عنــوان "بر رســى
 ارايه كرد. وى در اين تحقيق اثرات فشار هيدرودينايناميكى سيال را بر روى جداره مخازن مهار نشده در طول ارت ارتعاشـات ناشــا

 فونداسيون سبب طولانى شدن پريود جابجايى مخـازن در برابـر

 تعداد هفت مخزن را با نـسبتهـــاى ارتفـاع بــه شـعاع (H/R (H)

 مخازن وجود دارد [ّـ]. مخازن روزمينى بسته به شرايط تكيهكاهیى، به دو دسته تقـسيم

جدول ا- مشخصات مخازن بر رسى شده در اين پثوهش

شمار مخزن	$\begin{aligned} & \text { ارتفاع }(m) \end{aligned}$	$\begin{aligned} & \text { قطر } \\ & \text { (m) } \end{aligned}$	چچگَالى سيال	تنش تسليم فولاد $\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$	H/D	
1	$14 / 8{ }^{4}$	rV/\9	-/V	Mf..	-尔q	
r	$14 / 84$	rı/l.	- /V ${ }^{\text {d }}$	Mf..	\cdot / F	
r	\|Y/A		MF/rNe	- /V ${ }^{\text {d }}$	Mf..	- / ${ }^{\prime}$
+	11/9r	11191	- /V ${ }^{\text {d }}$	Mf..	-19	
Δ	$14 / 94$	$14 / 94$	- /V ${ }^{\text {d }}$	MF..	1/••	

اين پديده مى گردد. براى كنترل مخزن در برابـر لغــزش، بـرش پايه بهعنوان نيروى محرك بستر بهعنوان نيروى مقاوم در نظر گرفتــه شــــه و و بــه پيـشنهـاد دستورالعمل ASCE براى تأسيسات موجود از ضر يب اطمينـان
 نيز ضريب اصطكاك كف مخزن و بستر برابر \&/ / • در نظر گرفتــه
شده است [[].

- - نيروى ارتعاشى زلزله باعـث ارتعـاش مخــنـن و ســـيال درون آن

 پيشبينى هاى لازم براى جابجايی سقف شناور متناسب با دامنه امواج سطح سيال نشده باشــ، موجـب مــى گـردد كـــه پوشـش فوقانى صدمه ديده و محتويات درونى مخزن به بيـرون پاشــيده
 صدمه بزند. عامل كنترل كننده، ارتفاع موج مىباشد إـد [1].

r-

 پتروشيمى") بيشترشود، ممكن است باعث پارگى جداره مخزن و يا شكستگى لولههاى متصل به آن گَردد [[].

صورتى كه اين نسبت بيشتر از ا/ ا/ باشد، مخزن ناپايدار بــوده

 (N/m) حسب (N/m) مى

-r-r كمانش الاستيكى الماسى جداره

 ضميمه E آيين نامه API 650 كنترل مى كردد [[\&].

艮

 بهكار رود [٪].

- لغزش مخز -

نيروى برشى بزر گی در مقابل نيروى اصـطكاکى كـم باعـث بـروز

سه بعدى يكى از مخازن بههمـراه چگگـونگیى مـشبنـــدى آن در

 مى توان قابليتهاى سختشدگى تنش و تغيير مكانه هاى بزر گـ

 صورت گرفته برروى مخازن به اختصارشرح داده مىشود.

ץ-ا- تحليل استاتيكى

 حقيقت فشار هيدرواستاتيكى ايجاد شده سبب ايجاد تنش هـاى كششى حلقوى در جداره مخزن مى گردد.
-V- - نشست نامتقارن بستر
 اين آسيب ديدگى شود. براى كنترل آن، حداكثر آنر نشست بـستر، به ه سانتيمتر محدود شده است [[].

ץ- مدلسازى مخازن

براى نزديكى شدن به رفتـار دقيـق مخـازن بــه هنعـام تحر يــى زلزله، هم جداره و هم سيال درون مخز مدل كردن جداره از المـان Shell 63 و بـراى ســيال از المـان استفاده شــده اسـت. همحخنـين بـراى مــدل كـردن بلندشدگى كف مخـازن از شـرايط Gap اسـتفاده شـده اسـتـ. در حقيقت يك فنر فـشارى بـوده كــه بـههنـنـام كـشش، Gap

 المانهاى مايع درست منطبق با پوسته نيستند. روابط قيدى در مرز مايع و جداره طورى تعريف شدهاند كه امكان حركت نسبى
 كف مخـزن مسىتوانـــد مـستقلاً حر كـت داشـته باشــند. مـــل

شكل ا- مدل سه بعدى يكى از مخازن و نحوه مشبندى
آن در نرمافزار ANSYS

احتمال گذر •1 درصد در •ه سال (دوره باز گشت FVA أ سـال) استفاده نمود. همحֶنين ضميمه E آييننامه 650 API استفاده 65 اسره از ميرايـى Y
 ساختگاه به همراه طيف طرح اســتاندارد

隹

 معادله حركت زير براى شتابهاى متوالى اعمال شــده بــه كـف سازه مىباشد.
$[M]\{\ddot{U}\}+[C]\{\dot{U}\}+[K]\{U\}=\ddot{u}_{g}(t)[M]$

بار
پارامترهاى مشخصات نوسان يك مخـزن شـامل فر كـانسهــاى
 مىرود. تعيين اين پارامترهـا در گـام اول مـى توانــد در تفـسير
 هدف تعيين اين مشخصات بـهكـار رفتـه اسـت. در ايـن ميــان

 است. ذكر اين نكته ضرورى است كه دو مـود ذكـر شـــنـه داراى الى

پس از انجـام تحليـل مــودال و تعيـيـن مودهـاى اصــلى مخـــنـن

 انجام ترفته و نتايج جهات متعامــد بـا درصــدها
 ارزيابى لرزانى تأسيسات پالايشگاهى بايستى از طيــف طـرح بـا

Y-

 و $M /\left[D^{2}\left(W_{L}+W_{t}\right)\right]$ نتايج در جــدول (Y) نـشان داده شـــده اسـت
 جانبى واڭگَون خواهد شد.

ه- كنترل كمانش الاستيكى الماسى در جداره پس از محاسبه نسبت مقدار نيروى فشارى در واحد طول محيط جـدارئ مخـزن (b) را را

 نمى:اشد [[٪].

براى حل اين معادله در حوزه زمان از روش نيومـار ك اسـتفاده

 جرم و سختى است. در اين صورت خواهيم داشتى:

$$
[C]=\alpha[M]+\beta[K]+\sum_{i=1}^{m}\left[C F_{i}\right]
$$

كه در آن، [CFF] ماتريس ميرايى المـان i ام ســيال ويـسكوز، و
 مطابق رابطه زير بهدست مىآيند:
$\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\frac{2 \omega_{i} \omega_{j}}{\omega_{j}{ }^{2}+\omega_{i}{ }^{2}}\left[\begin{array}{cc}\omega_{j} & -\omega_{i} \\ -1 / \omega_{j} & 1 / \omega_{i}\end{array}\right]\left[\begin{array}{l}\xi_{i} \\ \xi_{j}\end{array}\right]$

در رابطه "ا،

زمانى بهار رفته است [1 [1].

 بيان شده است.

جدول r- نتايج حاصل از كنترل واثگّونى در مخازن

شماره مخزن	پارامتر مورد بر رسى	مقدار بهدست آمده از تحليل	مقدار مجاز	وضعيت آسيبپֶيرى
1	$M /\left[D^{2}\left(W_{L}+W_{t}\right)\right.$	-1981	l/aV	OK
r	$M /\left[D^{2}\left(W_{L}+W_{t}\right)\right.$	I/IT	I/QV	OK
r	$M /\left[D^{2}\left(W_{L}+W_{t}\right)\right.$	-/ $/$ D	l/ar	OK
${ }^{4}$	$M /\left[D^{2}\left(W_{L}+W_{t}\right)\right.$	I/VV	I/QV	OK
Q	$M /\left[D^{2}\left(W_{L}+W_{t}\right)\right.$	1/90	l/aV	N.G.

شماره مخزن	پارامتر مورد بررسى	مقدار بهدست آمده از تحليل (Mpa)	مقدار مجاز (Mpa)	وضعيت آسيبپِيرى
1	تنش فشارى جداره	\%/89	HE/AS	OK
r	تنش فشارى جداره	Q/Vr	צ\%/rk	OK
r	تنش فشارى جداره	1r/19	TH/TH	OK
c	تنش فشارى جداره	V/99	ヶ१/ヶ१	OK
Q	تنش فشارى جداره	-	-	-

V - كنترل لغزش

بهمنظور كنترل لغزش مخازن، حداكثر برش پايه بهدست آمـده
 زمانى به عنوان نيروى محرى (V) از نـرمافــرار اسـتخراج شــده

 ضـريب اطمينـان در برابـر لغـزش تأسيـسات موجـود

جهت كنترل لغزش مخازن رابطه ذيل بررسى شده است [1]ـ.

$$
1.5 \mathrm{~V} \leq 0.4 \mathrm{~W}
$$

كه در اين رابطه، W وزن مخـزن و ســيال درون آن بـر حـسب
نيوتن مى باشد.

६- كنترل كمانش الاستو پلاستيكى چافيلى با توجه به مطالب كفته شده در قسمتهاى قبل، عامل بهوجـو

 اين پديده، تنشههاى كششى حلقوى در جداره مخازن تحت اثر

 تنشههاى كششى حلقوى حداكثر در جداره مخزن شـماره ســه
 طبق دستورالعمل ASCE ظرفيت مجاز تنشهــاى كشـشى در
 رابطه برابر با تنش حد جارى شدن فولاد مصرفى اسـت كـــه در در مخازن مورد بررسى برابر با

مىباشد [1].

جدول \&- تنشهاى كششى حلقوى و كنترل كمانش پافيلى

شماره مخزن	پارامتر مورد برر	مقدار بهدست آمده از تحليل (Mpa)	مقدار مجاز (Mpa)	وضعيت آسيبڭֶيرى
1	تنش كششى حلقوى	IVY	rra	OK
r	تنش كششى حلقوى	190	rra	OK
r	تنش كششى حلقوى	109	rra	OK
${ }^{4}$	تنش كششى حلقوى	19.	rra	OK
0	تنش كششى حلقوى	111	rra	OK

شكل r- تنش كششى حلقوى در جداره مخزن شماره ب در آناليز طيفى (N/m²)

جدول ه- كنترل لغزش با توجه به نيروى محركى و مقاوم در برابر آن

شماره مخزن	نيروى محرك (MN)	نيروى مقاوم (MN)	نيروى مقاوم به نيروى محرى	وضعيت آسيب پِیی
1	th/as	¢ $0 / V 1$	$r / \cdot \Delta$	OK
r	10/84	r1/9v	$1 / 9 V$	OK
Γ	$N / 4 \Delta$	1N/Qr	1/98	OK
${ }^{\text {c }}$	V / M^{\prime}	$9 / 99$	$1 / 4$	OK
0	$1 / \wedge 9$	$V / \backslash \Delta$	1/49	OK

آسيبهايى به سقف مخازن مى گَردد. در ادامه، حـداكثر ارتفـاع

 است.خلاصه نتايج بهدست آمده نيز در جدول (9) ارايه گَرديـده
^-
ارتعاش مخزن و سيال درون آن در اثر لرزشهاى ناشـى از
 اگر پيشبينىهاى لازم در اين مـورد نـشود، سـبب وارد آمــن

شكل F－حداكثر ارتفاع سيال مخازن شماره يكـ

جدول \＆－حداكثر ارتفاع موج ايجاد شده در مخازن در اثر زلزله

شماره مخزن	نسبت H/D	ارتفاع موج ايجاد شده （m）	Free board فعلى（m）	درصد ار تفاع بحرانى （m）	وضعيت آسيب پّيرى
1	－／ヶ१	T／T10	－184	$10 / \lambda \mid$	N．G．
r	－／MV	$r / r \cdot \omega$	－194	IQ／VY	N．G．
r	－$/ \Delta r$	r／rva		IV／V9	N．G．
c	－ 194	I／VY．	－1呐	14／4M	N．G．
－	1／＊	1／Q人	－194	1－1V9	N．G．

صورت گرفته است．پارامترهـايـى كــه در انتخــاب ركـورد زلزلــه
 شرايط ساختتگاه با ايستگاه ثبت ركورد، اعم از پروفيل لايــههــا و جنس خـاك، دوره زمــينشناسـى، فاصـله ايـستگگاه تـا گــسل، بيشينه پتانسيل لرزهزايیى گسل اصلى و．．．مدنظر قـرار گرفتــه و

9－كنترل ميزان بلندشدگىى و نشــست نامقــارن بستر

با توجه به غير خطى بــودن رفتـار مخـازن مهـار نـشده، جهـت بررسى ميزان بلندشـدگى كـف و نشـست ناشـى از ضـربه ايـن بلندشدگىها، آناليز غيرخطى تاريخچچه زمـانى بـر روى مخـازن

شده و ناإيدار مى اشاشد．بدين ترتيب در ادامه راهكارهايى جهت مقاومسازى اين مخازن ارايه گرديده است．
 سيال كه در همگى مخــازن برر سـى شــده مـشاهده گرديده است، به نظر میر سد كـاهش ارتفـاع ســيال درونـى تـا

 هيحگگونه آسـيبى را بـه سـقف سـازه وارد نخواهــد ساخت．

 اطراف مخزن（زير ورق پوسته）و مهار مخزن در اين رينگَ بتنى انتخـاب شـده و نـسبت كرديده است．بدين ترتيب اين نسبت بـه
 پيـشنهادی در شـكل（D）نــشان داده شــده اسـتـ．تــنشهـهـاى

از هr ميليمتر باشد [٪].

زلزله طبس با توجه به اهميت آن از لحـاظ قـدـدرت، فـرم طيـف

 آييننامهها حداقل سه ركـورد از سـه زلز الــه مختـلـف را توصـيه
 السنترو كـه شـرايط فـوقالــذكر را بــرآور ده كـردهانــد، انتخـاب

 حداكثر مقــادير آنهـا اسـتخراج و در جــدول（V）ارايــه تر درديـده است．

－1－راهكارهاى مقاومسازى

با توجه به محدوديتهاى موجود در شناخت ميزان دقيق خطـر

 ازجهت خرابى در يكى زلز

 با جزئيات بيشتر مىتواند اطلاعات دقيـقتـرى را الز رفتــــار آتـى

 نمودن آن با در نظركرفتن امكانات و منابع موجود مىباشد［1］．
 در كليه مخازن بررسى شــده، سـطح سـيال درونـى در وضــيـيت بحرانى قرار گرفته است．همچچنين نتايج حاكى از آن آن اسـت كــهـ

جدول V－حداكثر ميزان بلندشدگى كف و نشست نامتقارن بستر

هـ همار مخزن	حداكثر نشست （cm）	مقدار مجاز نشست （cm）	حداكثر بلندشدگى كف（cm）	مقدار مجاز بلندشدگى（cm）	وضعيت آسيبپٍ
1	－	Q	1／4	r．	OK
r	－	Q	r／4	r ．	OK
r	1／＊	D	19	r 。	OK
＋	－$/$ K	D	9／0	r ．	OK
－	1／＊	－	Mf	r 。	OK

شكل ه- طرح پيشنهادى جهت مقاومسازى مخزن شماره پنج در برابر وازگَنى

ملاحظه اى مشاهده نگَرديده است. (تاكنون در مخــازن بـا قطر بزر گتر از 9 متر لغزش قابل ملاحظه اى ديــده نــشده است.)
هر چه قطر مخازن افزايش مى يابــد احتمـال بـروز پديــده Sloshing Free board بر طبق تحليلهاى صورت گرفته، اگر ارتفاع

 زلزله، آسيبى به سقف شناور مخازن وارد نخواهد ساخت. - بحرانىترين هندسه جهت بروز پديــده Sloshing سـيال، مخازن با نسبت ارتفاع به قطر حدوداً ه/ • مىباشد.

 آييننامهاى مىىباشد.

 افزايش خواهد يافت.

11- نتيجهع گيرى
نتايج بهدست آمده از تحقيق حاكى از آن است كه براى ساخت مخازن فولادى حاوى نفت خام در مناطق با خطر لـرزه خيـــى زياد:

- هر چه نسبت ارتفاع به قطر مخــازن بيـشتر باشــ، درصـد وازگونى در آنها افزايش مى يابد.
 مخازن با نسبت ارتفاع به قطر بزر گتر از V / • پرهيز شود.
 كمانش الاستيك الماسى در جداره كمتر از مقـادير مجــاز مى مباشد. - هر چه نسبت ارتفاع به قطرمخازن افزايش مى يابــد ميـزان كمانش الاستيكى الماسى در جــداره نيـز افـزايش خواهـراهــد
يافت.

در مخازن با قطر بزر گَتر، مقـدار كمـانش الاستوپالاسـتيكـ
 مى ماشد.

- هر چه نسبت ارتفاع به قطر مخزن افزايش مى يابد، ميـزان كمانش الاستوپاستيكى پافيلى نيز افزايش مى يابد. - در مخازن بررسى شده با نسبت 1 H/D 1 لغـزش قابـل

مراجع

آيـيننامــه طراحـى سـاختمانها در برابـر زلزلــهـ، اســانـاندارد

مركز تحقيقات ساختمان و مسكن، (IYAF).
2. ASCE, "Guidelines For Seismic Evaluation And Design Of Petrochemical Facilities", Task Committee On Seismic Evaluation And Design Of Petrochemical Facilities, New York, USA, (1997).
3. EI-zeiny, A. A., "Factors Affecting the Nonlinear Seismic Response of unanchored Tank", 16th ASCE Engineering Mechanics Conference, University of Washington, Seattle, July 16-18, (2003).
4. Koller, M., Malhotra, P., "Seismic Evaluation Of Unanchored Cylindrical Tanks", 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, P.P. 2534, August 1-6, (2004).
5. API Standard 650, November1998, "Welded teel Tanks for oil storage", American Petroleum Institut, Tenth Edition, Adendum1, March (2000).

The Evaluation Of Seismic Vulnerability And Retrofitting Steel Oil Tanks

Yaser Zaree ${ }^{1}$

Abstract

Abstract: In this study, the seismic behavior of five oil storage tanks with height to diameter ratios of $0.39,0.47,0.53,0.63,1.0$ was examined using the powerful software ANSYS and their failure mechanisms, including elephant leg buckling, diamond elastic buckling, failure of roof due to fluctuation of fluid, sliding, overturning, up lift and unsymmetrical tank leakage were assessed. several analyses, including static, modal, spectral (linear), and time history (nonlinear) analyses were done for studying the above parameter on the above-mentioned tanks, and the results were stated. Finally it was realized that if the tank freeboard considered as 0.18 H (H: the tank Height), no roof tank risk shall be present as regards fluctuation of fluid during an earthquake. Also, it was seen that tanks with a height to diameter ratio greater or equal to 1.0 would overturn under the loads applied and are unstable.

Other mechanisms studied were all less than the value allowed by the code. It is noteworthy that the tanks in question are located in Shiraz and the results are valid for unanchored, crude oil storage tanks.

Key Words: Steel Oil Tanks, Seismic Damage, Elephant Leg Buckling, Diamond Buckling, Freeboard, Sloshing

[^0]
[^0]: 1- Faculty of Islamic Azad University, Abadeh Branch

