Fiber Bragg Grating Sensor as the Most Effective Distributed Optical Fiber Sensor in Defense Applications of Civil Structures

Document Type : Original Article

Authors

1 imam hossein university

2 iran university of science and technology

Abstract

Protection of civil structures such as towers, bridges, dams, refineries and other large structures against natural and unnatural disasters is one of the topics which should be addressed in the field of passive defense. One of the most important issues which should be regarded for massive structures is monitoring the status of their strength after the construction process. Cracks and fractures caused by subsidence, structural age, humidity, cold and warm air, corrosion, decay, as well as various disasters, are the problems that may occur after construction and can affect structure safety over time. Hence, many of structures in the world, besides being carefully monitored when constructed, are controlled by different systems after construction. One of the most popular types of these systems is distributed optical fiber sensors system. In this article, we first introduce and then compare different types of these sensors in the field of structural defense. After explaining the advantages and disadvantages of each of these distributed sensors and introducing their samples in different structures of the world, we will see that Fiber Bragg Grating sensor is more widely used than any other optical fiber distributed sensor, for monitoring the strength of civil structures.The main reason for the tendency to use Fiber Bragg Grating sensors is cost-effectiveness as they havehigh spatial resolutionand are easy to construct and install.

Keywords


  1. F. Vahedifard, A. AghaKouchak, E. Ragno, S. Shahrokhabadi, and I. Mallakpour, “Lessons from the Oroville dam,” Science, pp. 1139-1140, 2017.##

 

  1. رحیمی، صابر، صحرایی، روح الله، کنترل ایمنی سازه های بتنی با حسگر فیبر نوری، اولین کنفرانس ملی عمران و توسعه، رشت، دانشگاه آزاد اسلامی واحد لشت نشا، ۱۳۹۰.##

 

  1. P. J .Lynch, et al, “Design of piezoresistive MEMS-based accelerometer for integration with wireless sensing unit for structural monitoring,” Journal of Aerospace Engineering, vol. 16, no. 3, pp. 108-114, 2003.##

 

  1. ملک‌زاده، عبداله، منصورسمائی، محسن، نوری جویباری، سودابه، حسگرهای توزیعی فیبرنوری روشی نوین برای کاهش خسارات ناشی از حوادث و بلایای مختلف در سازه‌های شهری تهران، دانش پیشگیری ‌و مدیریت بحران، دوره ۷، شماره 4، صص. 331-320، ۱۳۹۶.##

 

  1. منصورسمائی، محسن، ملک‌زاده، عبداله، نوری جویباری، سودابه، پاشایی، رسول، رسیدن به قدرت تفکیک فضایی درحد میلی‌متر برای 17.5 کیلومتر از فیبر سنجش در حسگرهای توزیعی فیبر نوری برپایه پراکندگی بریلوئن، اولین همایش ملی فیزیک دانشگاه آزاد اسلامی، تبریز، تیرماه 1395.##
    1.  6.         منصورسمائی، محسن، ملک‌زاده، عبداله، نوری جویباری، سودابه، پاشایی، رسول، بهبود قدرت تفکیک فضایی در حسگرهای توزیعی فیبر نوری برپایه همبستگی، با استفاده از روش همبستگی فازی، اولین همایش ملی فیزیک دانشگاه آزاد اسلامی، تبریز، تیرماه 1395.##

 

  1. H.-E .Joe, et al, “A review on optical fiber sensors for environmental monitoring,” International journal of precision engineering and manufacturing-green technology, vol. 5, no. 1, pp. 173-191, 2018.##

 

  1. Ding, Zhenyang, et al, “Distributed optical fiber sensors based on optical frequency domain reflectometry,” A review Sensors, vol. 18, no. 4, p. 1072, 2018.##

 

  1. ملک‌زاده، عبد الله، پاشایی، رسول، منصور سمایی، محسن، حسگر توزیعی فیبر نوری حساس به فاز در اقدامات پدافند غیرعامل، مجله پدافند غیر عامل، دوره 9 شماره 4، ۱۳۹۷.##
  2. ملک‌زاده، عبداله، پاشایی، رسول، منصور سمایی، محسن، افزایش بهره و کاهش عدد نویز حسگرهای توزیعی فیبر نوری با ترکیب تقویت کننده های اربیوم و رامان، هفتمین همایش سراسری پدافند جنگ های نوین، تهران، دانشگاه جامع امام حسین(ع)، دانشکده و پژوهشکده علوم پایه، ۱۳۹۶.##

 

  1. پاشایی، رسول، ملک‌زاده، عبداله، طراحی و شبیه‌سازی حسگر توزیعی فیبر نوری حساس به فاز برمبنای پراکندگی رایلی به منظور پایش مرزها، پایان‌نامه کارشناسی ارشد دانشگاه جامع امام حسین(ع)، 1396.##

 

  1. M. K. Saxena, et al, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Optics & Laser Technology, vol. 65, pp. 14-24, 2015.##

 

  1. P. Dragic and J. Ballato, “A brief review of specialty optical fibers for Brillouin-scattering-based distributed sensors,” Applied Sciences, vol. 8, no. 10, pp. 1996, 2018.##

 

  1. D. Inaudi and G. Branko, “Long-range pipeline monitoring by distributed fiber optic sensing,” Journal of pressure vessel technology, vol. 132, no. 1, pp. 011701, 2010.##

 

  1. Z. Qin, C. Liang, and B. Xiaoyi, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technology Letters, vol. 24, no. 5, p. 542, 2012.##

 

  1. A. M. Soto, A. J. Ramírez, and L. Thévenaz, “Reaching millikelvin resolution in Raman distributed temperature sensing using image processing,” Sixth European Workshop on Optical Fibre Sensors, vol. 9916, pp. 99162A, International Society for Optics and Photonics, 2016.##

 

  1. A. Malakzadeh and M. Mansoursamaei, “New matrix solution of the phase-correlation technique in a Brillouin dynamic grating sensor,” Journal of Optical Technology, vol. 85, no. 10, pp. 644-647, 2018.##

 

  1. C. Campanella, et al, “Fibre Bragg Grating Based Strain Sensors: Review of Technology and Applications,” Sensors, vol. 18, no. 9, p. 3115, 2018.##

 

  1. J. Ahmad, et al, “High temporal and spatial resolution distributed fiber Bragg grating sensors using time-stretch frequency-domain reflectometry,” Journal of Lightwave Technology, vol. 35, no. 16, pp. 3289-3295, 2017.##

 

  1. C. Fischer, et al, “Fiber Optic Monitoring of the Masonry Arch Approach Spans in the Brooklyn Bridge,” Structural Materials Technology, 2010.##

 

  1. D. Inaudi and B. Glisic, “Long-range pipeline monitoring by distributed fiber optic sensing,” Journal of pressure vessel technology, vol. 132, no. 1, p. 011701, 2010.##

 

  1. F. Vallejo, Montserrat, S. Rota-Rodrigo, and M. Lopez-Amo, “Remote (250 km) fiber Bragg grating multiplexing system,” Sensors, vol. 11, no. 9, pp. 8711-8720, 2011.##

 

  1. A. Denisov, “Brillouin Dynamic Gratings in Optical Fibres for Distributed Sensing and Advanced Optical Signal Processing,” Ph.D. Thesis, École Polytechnique Federale de Lausanne, 2015.‏‏##

 

  1. Y. Pan, et al, “Note: Response time characterization of fiber Bragg grating temperature sensor in water medium,” Review of Scientific Instruments, vol. 87, no. 11, p. 116102, 2016.##

 

  1. L. Ren, et al, “Structural health monitoring system developed for Dalian stadium,” International Journal of Structural Stability and Dynamics, vol. 16, no. 4, p. 1640018, 2016.##

 

  1. https://www.thorlabs.com/search/thorsearch.cfm?search=card, 2017.##
  2. C. C. Lai, H. Y. Au, K. M. Chung, W. H. Chung, Shun Yee Michael Liu, H. Y. Tam, and Y. Q. Ni, “Optical sensor networks for structural health monitoring of canton tower,” 2011.##

 

  1. J. Bonefacino, T. S. Glen, X. Cheng, S. T. Boles, and H. Y. Tam, “Ultrafast fiber Bragg grating inscription in DPDS-core doped POF using 325 nm laser,” In Micro-structured and Specialty Optical Fibres VI, vol. 11029, p. 110290C. International Society for Optics and Photonics, 2019.##

 

 

  1. S. Drusová, et al, “Possibilities for Groundwater Flow Sensing with Fiber Bragg Grating Sensors,” Sensors, vol. 19, no. 7, pp. 1730, 2019.##

 

  1. Lin, Yung Bin, et al, “Flood scour monitoring system using fiber Bragg grating sensors,” Smart materials and Structures, vol. 15, no. 6, pp. 1950, 2006.##