In today's societies, the power systems despite their vast developments as critical infrastructures (CI), are exposed to numerous natural and unnatural threats. In the past, power grids were designed only to withstand typical events which would have predictable probabilities. However, nowadays events with low probabilities and high effects are considered a major challenge. Power grids are expected to have the necessary flexibility in the face of such events and should not be disrupted quickly. This demonstrates the concept of resilience. In this article the resilience enhancement strategies, and in particular, the undergrounding as the best solution, are examined considering focused physical attacks. Taking budget constraints into account, the proposed algorithm determines the priorities of lines and buses to be undergrounded. This algorithm considers two approaches of the contingency analysis, namely the experts views and the index of load loss, in order to get the best choices for undergrounding. It should be noted that in this paper the static status of the grid is considered. Finally, the proposed method is implemented on the IEEE 39-bus test grid using Digsilent software, and the results are presented and discussed to evaluate the capabilities of the proposed method.
Wang, C. Chen, J. Wang, and R. Baldick, "Research on Resilience of Power Systems Under Natural Disasters-A Review," IEEE Trans. on Power Syst., vol. 31, no. 2, pp. 1604-1613, March 2016.
غفارپور، رضا؛ علیزاده، محمدایمان، "تبیین مفهوم تابآوری در شبکه برق و ارتباط آن با پدافند غیرعامل"، نشریه علمی شهر تابآور، سال دوم، شماره 1، صفحات 64-51، بهار 1399.
دشتی، رضا، تابآوری در سامانههای توزیع برق، انتشارات قائم، تهران، ایران،
Fisher, "More than 70 Ways to Show Resilience," nature, ?, 2015.
I. A. Council, "Critical Infrastructure Resilience Final Report and Recommendations", Washington, DC, USA, 2009.
Bhusal, M. Gautam, M. Abdelmalak, and M. Benidris, "Modeling of Natural Disasters and Extreme Events for Power System Resilience Enhancement and Evaluation Methods," In Int. Conf. on Probabilistic Methods Applied to Power Syst. (PMAPS), Liege, Belgium, 2020.
غفارپور، رضا؛ جنتی اسکوئی، محمدرضا؛ نجفی روادانق، سجاد؛ اعلمی، حبیب اله، “"تابآوری، پاسخی برای نگرانیهای موجود در حوزه پدافند غیرعامل شبکه برق،" نشریه علمی پدافند غیرعامل، سال دهم، شماره 1، صفحات 22-1، بهار 1398.
پالیزوانمحمد؛ دشتی، رضا، “مقاومسازی زیرساختهای شبکه برق با استفاده از روشهای پدافند غیرعامل،” فصلنامه علمی ترویجی پدافند غیرعامل، سال نهم، شماره 4،صفحات 57-67، 1397.
Panteli, D. N. Trakas, P. Mancarella, and N. D. Hatziargyriou, "Power Systems Resilience Assessment: Hardening and Smart Operational Enhancement Strategies," IEEE, vol. 105, no. 7, pp. 1202-1213, July 2017.
Panteli and P. Mancarella, "The Grid: Stronger, Bigger, Smarter?: Presenting a Conceptual Framework of Power System Resilience," IEEE, Power Energy Mag. no. 3, vol. 13, pp. 58-66, May 2015.
Bie, Y. Lin, G. Li, and F. Li, " Battling the Extreme: A Study on the Power System Resilience," Proc. IEEE, no. 7, vol. 105, pp. 1253-1266, 2017.
Bhusal, M. Abdelmalak, M. Kamruzzaman, and M. Benidris, "Power System Resilience: Current Practices,Challenges, and Future Directions," IEEE Access, vol. 8, pp. 18064-18086, January 2020.
Lei, C. Chen, Y. Li, and Y. Hou, "Resilient Disaster Recovery Logistics of Distribution Systems: Co-Optimize Service Restoration with Repair Crew and Mobile Power Source Dispatch," IEEE Trans. Smart Grid, vol. 10, no. 6, pp. 6187-6202, Nov. 2019.
Lin and Z. Bie, "Tri-level Optimal Hardening Plan for a Resilient Distribution System Considering Reconfiguration and DG Islanding," Appl. Energy, vol. 210, pp. 1266–1279, Jan. 2018.
Gholami, T. Shekari, and S. Grijalva, "Proactive Management of Microgrids for Resiliency Enhancement: An Adaptive Robust Approach," IEEE Trans. Sustain. Energy, Vol. 10, no. 1, pp. 470–480, Jan. 2019.
Panteli, P. Mancarella, D. N. Trakas, E. Kyriakides, and N. D. Hatziargyriou, "Metrics and Quantification of Operational Infrastructure Resilience in Power Systems," IEEE Trans. Power Syst. vol. 32, no. 6, pp. 4732-4742, Nov. 2017.
Hussain, A. Oulis Rousis, I. Konstantelos, G. Strbac, J. Jeon, and H. Kim, "Impact of Uncertainties on Resilient Operation of Microgrids: A Data-driven Approach," IEEE Access, vol. 7, pp. 14924-14937, Jan. 2019.
Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie, "Enhancing Power System Resilience through Hierarchical Outage Management in Multi-microgrids," IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2869–2879, 2016.
Lei, C. Chen, H. Zhou, and Y. Hou, "Routing and Scheduling of Mobile Power Sources for Distribution System Resilience Enhancement," IEEE Trans. Smart Grid, vol. 10, pp. 5650-5662, Sep. 2019.
Kim and Y. Dvorkin, "Enhancing Distribution System Resilience with Mobile Energy Storage and Microgrids," IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 4996-5006, Sep. 2019.
Panteli and P. Mancarella , "Modelling and Evaluating the Resilience of Critical Electrical Power Infrastructure to Extreme Weather Events," in IEEE Syst. J. vol. 11, no. 3, pp. 1733-1742, Sep. 2017.
Lin, B. Chen, J. Wang, and Z. Bie, "A Combined Repair Crew Dispatch Problem for Resilient Electric and Natural Gas System Considering Reconfiguration and DG Islanding," IEEE Trans. Power Syst. vol. 34, no. 4, pp. 2755-2767, Jul. 2019.
Huang, J. Wang, C. Chen, J. Qi, and C. Guo, "Integration of Preventive and Emergency Responses for Power Grid Resilience Enhancement," IEEE Trans. Power Syst. vol. 32, no. 6, pp. 4451-4463, Nov. 2017.
Shahidehpour, M. Yan, X. Ai, J. Wen, Z. Li, S. Bahramirad, and A. Paaso, "Enhancing the Transmission Grid Resilience in Ice Storms by Optimal Coordination of Power System Schedule with Pre-Positioning and Routing of Mobile Dc De-Icing Devices," IEEE Trans. Power Syst. vol. 34, no. 4, pp. 2663-2674, Jul. 2019.
Dehghanian, S. Aslan, and P. Dehghanian, "Quantifying Power System Resiliency Improvement Using Network Reconfiguration," IEEE 60th Int. Midwest Symp. on Circuits and Syst. pp. 1364-1367, 2017.
Ma, B. Chen, and Z. Wang, "Resilience Enhancement Strategy for Distribution Systems under Extreme Weather Events," IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 1442-1451, Mar. 2018.
EPRI, "Distribution Grid Resiliency: Undergrounding," Electr. Power Res. Institute, Palo Alto, CA, USA, 2015.
Ma, S. Li, Z. Wang, and F. Qiu , "Resilience-oriented Design of Distribution Systems," IEEE Trans. Power Syst. vol. 34, no. 4, pp. 2880-2891, 2019.
EPRI, "Distribution Grid Resiliency: Vegetation Management," Electr. Power Res. Institute, Palo Alto, CA, USA, 2015.
Mahzarnia, M. P. Moghaddam, P. T. Baboli and P. Siano , "A Review of the Measures to Enhance Power Systems Resilience," In IEEE Syst. J. vol. 14, no. 3, pp. 4059-4070, 2020.
Nezamoddini, S. Mousavian, and M. Erol-Kantarci, "A Risk Optimization Model for Enhanced Power Grid Resilience against Physical Attacks," Electric Power Syst. vol. 143, pp. 329-338, Feb. 2017.
Shao, M. Shahidehpour, X. Wang, X. Wang, and B. Wang, "Integrated Planning of Electricity and Natural Gas Transportation Systems for Enhancing the Power Grid Resilience," IEEE Trans. Power Syst. vol. 32 no.2, pp. 4418-4429, Nov. 2017.
Souto and S. Santoso, "Overhead versus Underground: Designing Power Lines for Resilient, Cost-Effective Distribution Networks under Windstorms," 2020 Resilience Week (RWS), pp. 113-118, 2020.
Mirsadeghi, M., ئoazen, F., & ghaffarpour, R. (2022). Improving the Resilience of Power Grids in the Face of Focused Attacks Using the Contingency Analysis. Passive Defense, 13(3), 1-10.
MLA
M. Mirsadeghi; F. ئoazen; reza ghaffarpour. "Improving the Resilience of Power Grids in the Face of Focused Attacks Using the Contingency Analysis", Passive Defense, 13, 3, 2022, 1-10.
HARVARD
Mirsadeghi, M., ئoazen, F., ghaffarpour, R. (2022). 'Improving the Resilience of Power Grids in the Face of Focused Attacks Using the Contingency Analysis', Passive Defense, 13(3), pp. 1-10.
VANCOUVER
Mirsadeghi, M., ئoazen, F., ghaffarpour, R. Improving the Resilience of Power Grids in the Face of Focused Attacks Using the Contingency Analysis. Passive Defense, 2022; 13(3): 1-10.