[2] A. Abdou and N. Darwish, “Severity classification of software code smells using machine learning techniques: A comparative study,” J. Softw. (Malden), vol. 36, no. 1, p. e2454, 2024,
https://doi.org/10.1002/smr.2454
[3] M. Fowler, “Refactoring: improving the design of existing code.” Addison-Wesley Professional, 2018.
[4] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, “Comparing and experimenting machine learning techniques for code smell detection,” Empir. Softw. Eng., vol. 21, pp. 1143-1191, 2016,
http://dx.doi.org/10.1007/s10664-015-9378-4
[5] C. Marinescu, R. Marinescu, P. Mihancea, D. Ratiu, and R. Wettel, “iPlasma: An Integrated Platform for Quality Assessment of Object-Oriented Design.[C],” IEEE Int. Conf. Softw. Maint. Ind. Tool Vol., 2005: DBLP.
[6] F. Palomba, R. Oliveto, and A. De Lucia, “Investigating code smell co-occurrences using association rule learning: A replicated study,” 2017 IEEE Workshop Mach. Learn. Tech. Softw. Qual. Eval. (MaLTeSQuE), 2017: IEEE, pp. 8-13,
https://doi.org/10.1109/MALTESQUE.2017.7882010
[9] K. Kaur and S. Jain, “Evaluation of machine learning approaches for change-proneness prediction using code smells,” Proc. 5th Int. Conf. Front. Intell. Comput. (FICTA), 2017: Springer, pp. 561-572,
http://dx.doi.org/10.1007/978-981-10-3153-3_56
[10] R. Wieman, “Anti-pattern Scanner: an approach to detect anti-patterns and design violations.” LAP Lambert Academic Publishing, 2011.
[11] T. F. M. Sirqueira, A. H. M. Brandl, E. J. P. Pedro, R. de Souza Silva, and M. A. P. Araujo, “Code smell analyzer: a tool to teaching support of refactoring techniques source code,” IEEE Lat. Am. Trans., vol. 14, no. 2, pp. 877-884, 2016,
https://doi.org/10.1109/TLA.2016.7437235
[12] G. Szőke, C. Nagy, L. J. Fülöp, R. Ferenc, and T. Gyimóthy, “FaultBuster: An automatic code smell refactoring toolset,” 2015 IEEE 15th Int. Work. Conf. Source Code Anal. Manip. (SCAM), 2015: IEEE, pp. 253-258,
https://doi.org/10.1109/SCAM.2015.7335422
[13] A. AbuHassan, M. Alshayeb, and L. Ghouti, “Software smell detection techniques: A systematic literature review,” J. Softw. (Malden), vol. 33, no. 3, p. e2320, 2021,
https://doi.org/10.1002/smr.2320
[14] M. Jerzyk and L. Madeyski, “Code Smells: A Comprehensive Online Catalog and Taxonomy,” in Developments in Information and Knowledge Management Systems for Business Applications: Volume 7: Springer, 2023, pp. 543-576.
[16] G. Lacerda, F. Petrillo, M. Pimenta, and Y. G. Guéhéneuc, “Code smells and refactoring: A tertiary systematic review of challenges and observations,” J. Syst. Softw., vol. 167, p. 110610, 2020,
https://doi.org/10.1016/j.jss.2020.110610
[17] R. Sandouka and H. Aljamaan, “Python code smells detection using conventional machine learning models,” PeerJ Comput. Sci., vol. 9, p. e1370, 2023,
https://doi.org/10.7717/peerj-cs.1370
[19] A. S. Abdou and N. R. Darwish, “Early prediction of software defect using ensemble learning: A comparative study,” Int. J. Comput. Appl., vol. 179, no. 46, pp. 29-40, 2018,
http://dx.doi.org/10.5120/ijca2018917185
[20] E. V. de Paulo Sobrinho, A. De Lucia, and M. de Almeida Maia, “A systematic literature review on bad smells–5 w's: which, when, what, who, where,” IEEE Trans. Softw. Eng., vol. 47, no. 1, pp. 17-66, 2018,
https://doi.org/10.1109/TSE.2018.2880977
[21] Y. Tian, K. Li, T. Wang, Q. Jiao, G. Li, Y. Zhang, and H. Liu, “Survey on Code Smells. Ruan Jian Xue Bao,” J. Softw., vol. 34, no. 1, pp. 150-170, 2023,
http://dx.doi.org/10.13328/j.cnki.jos.006431
[22] F. L. Caram, B. R. D. O. Rodrigues, A. S. Campanelli, and F. S. Parreiras, “Machine learning techniques for code smells detection: a systematic mapping study,” Int. J. Softw. Eng. Knowl. Eng., vol. 29, no. 02, pp. 285-316, 2019,
https://doi.org/10.1142/S021819401950013X
[23] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine learning techniques for code smell detection: A systematic literature review and meta-analysis,” Inf. Softw. Technol., vol. 108, pp. 115-138, 2019,
https://doi.org/10.1016/j.infsof.2018.12.009
[25] S. Jain and A. Saha, “Improving performance with hybrid feature selection and ensemble machine learning techniques for code smell detection,” Sci. Comput. Program., vol. 212, p. 102713, 2021,
https://doi.org/10.1016/j.scico.2021.102713
[26] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, and D. Poshyvanyk, “When and why your code starts to smell bad,” 2015 IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., 2015, vol. 1: IEEE, pp. 403-414,
https://doi.org/10.1109/ICSE.2015.59
[28] D. Mahalakshmi, P. Kasinathan, D. Elangovan, C. R. Bhat, M. Balamurugan, and S. Sivakumar, “Code Smell Detection using Hybrid Machine Learning Algorithms,” 2023 5th Int. Conf. Inventive Res. Comput. Appl. (ICIRCA), 2023: IEEE, pp. 633-638,
https://doi.org/10.1109/ICIRCA57980.2023.10220911
[29] S. Subedi, “Intelligent Code Smell Detection System Using Deep Learning,” Pulchowk Campus, 2021.
[30] M. Fowler, “Refactoring: Improving the Design of Existing Code.” Addison Wesley, 1999.
[31] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A. De Lucia, “On the diffuseness and the impact on maintainability of code smells: a large scale empirical investigation,” Proc. 40th Int. Conf. Softw. Eng., 2018, pp. 482-482,
https://doi.org/10.1145/3180155.3182532
[32] A. Tahir, S. Counsell, and S. G. MacDonell, “An empirical study into the relationship between class features and test smells,” 2016 23rd Asia-Pacific Softw. Eng. Conf. (APSEC), 2016: IEEE, pp. 137-144,
https://doi.org/10.1109/APSEC.2016.029
[33] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method refactoring opportunities,” IEEE Trans. Softw. Eng., vol. 35, no. 3, pp. 347-367, 2009,
https://doi.org/10.1109/TSE.2009.1
[34] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “Decor: A method for the specification and detection of code and design smells,” IEEE Trans. Softw. Eng., vol. 36, no. 1, pp. 20-36, 2009,
https://doi.org/10.1109/TSE.2009.50
[35] D. A. Tamburri, F. Palomba, A. Serebrenik, and A. Zaidman, “Discovering community patterns in open-source: a systematic approach and its evaluation,” Empir. Softw. Eng., vol. 24, pp. 1369-1417, 2019,
https://doi.org/10.1007/s10664-018-9659-9
[36] F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An exploratory study of the impact of antipatterns on class change-and fault-proneness,” Empir. Softw. Eng., vol. 17, pp. 243-275, 2012,
http://dx.doi.org/10.1007/s10664-011-9171-y
[38] G. Suryanarayana, G. Samarthyam, and T. Sharma, “Refactoring for software design smells: managing technical debt.” Morgan Kaufmann, 2014.
[39] T. Sharma, M. Fragkoulis, and D. Spinellis, “House of cards: Code smells in open-source c# repositories,” 2017 ACM/IEEE Int. Symp. Empir. Softw. Eng. Meas. (ESEM), 2017: IEEE, pp. 424-429,
https://doi.org/10.1109/ESEM.2017.57
[40] E. Jabrayilzade, O. Gürkan, and E. Tüzün, “Towards a taxonomy of inline code comment smells,” 2021 IEEE 21st Int. Work. Conf. Source Code Anal. Manip. (SCAM), 2021: IEEE, pp. 131-135,
https://doi.org/10.1109/SCAM52516.2021.00024
[41] R. C. Martin, “Clean code: a handbook of agile software craftsmanship.” Pearson Education, 2009.
[42] V. Arnaoudova, M. Di Penta, G. Antoniol, and Y.-G. Guéhéneuc, “A new family of software anti-patterns: Linguistic anti-patterns,” 2013 17th Eur. Conf. Softw. Maint. Reeng., 2013: IEEE, pp. 187-196,
https://doi.org/10.1109/CSMR.2013.28
[43] A. Vetro, L. Ardito, G. Procaccianti, and M. Morisio, “Definition, implementation and validation of energy code smells: an exploratory study on an embedded system,” Third Int. Conf. Smart Grids Green Commun. IT Energy-aware Technol., 2013, pp. 34-39.
[44] C. U. Smith and L. G. Williams, “More new software performance antipatterns: Even more ways to shoot yourself in the foot,” Comput. Meas. Group Conf., 2003: Citeseer, pp. 717-725.
[45] C. U. Smith and L. G. Williams, “New software performance antipatterns: More ways to shoot yourself in the foot,” Int. CMG Conf., 2002, pp. 667-674.
[46] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D. Poshyvanyk, “An empirical investigation into the nature of test smells,” Proc. 31st IEEE/ACM Int. Conf. Autom. Softw. Eng., 2016, pp. 4-15,
https://doi.org/10.1145/2970276.2970340
[47] H. Mumtaz, M. Alshayeb, S. Mahmood, and M. Niazi, “A survey on UML model smells detection techniques for software refactoring,” J. Softw. (Malden), vol. 31, no. 3, p. e2154, 2019,
https://doi.org/10.1002/smr.2154
[48] T. Arendt and G. Taentzer, “UML model smells and model refactorings in early software development phases,” Universitat Marburg, 2010.
[50] F. Palomba, D. A. Tamburri, A. Serebrenik, A. Zaidman, F. A. Fontana, and R. Oliveto, “Poster: How Do Community Smells Influence Code Smells?,” 2018 IEEE/ACM 40th Int. Conf. Softw. Eng. Companion (ICSE-Companion), 2018: IEEE, pp. 240-241.
[51] K. A. Qamar, E. Sülün, and E. Tüzün, “Towards a taxonomy of bug tracking process smells: A quantitative analysis,” 2021 47th Euromicro Conf. Softw. Eng. Adv. Appl. (SEAA), 2021: IEEE, pp. 138-147,
https://doi.org/10.1109/SEAA53835.2021.00026
[53] T. Sharma, “Presentation smells: How not to prepare your conference presentation,” ed, 2016.
[54] F. Hermans, M. Pinzger, and A. Van Deursen, “Detecting and visualizing inter-worksheet smells in spreadsheets,” 2012 34th Int. Conf. Softw. Eng. (ICSE), 2012: IEEE, pp. 441-451,
https://doi.org/10.1109/ICSE.2012.6227171
[55] B. Karwin, “SQL Antipatterns: Avoiding the pitfalls of database programming,” Pragmat. Bookshelf, pp. 15-155, 2010.
[56] D. Almeida, J. C. Campos, J. Saraiva, and J. C. Silva, “Towards a catalog of usability smells,” Proc. 30th Annu. ACM Symp. Appl. Comput., 2015, pp. 175-181,
https://doi.org/10.1145/2695664.2695670
[57] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy, “Investigating the energy impact of android smells,” 2017 IEEE 24th Int. Conf. Softw. Anal. Evol. Reeng. (SANER), 2017: IEEE, pp. 115-126,
https://doi.org/10.1109/SANER.2017.7884614
[58] M. Ghafari, P. Gadient, and O. Nierstrasz, “Security smells in android,” 2017 IEEE 17th Int. Work. Conf. Source Code Anal. Manip. (SCAM), 2017: IEEE, pp. 121-130,
https://doi.org/10.1109/SCAM.2017.24
[60] N. Kryvinska, M. Greguš, and S. Fedushko, “Developments in Information and Knowledge Management Systems for Business Applications: Volume 7.” Springer Nature, 2023.
[61] K. Alkharabsheh, Y. Crespo, E. Manso, and J. A. Taboada, “Software design smell detection: a systematic mapping study,” Softw. Qual. J., vol. 27, pp. 1069-1148, 2019,
https://doi.org/10.1007/s11219-018-9424-8
[62] M. V. Mäntylä and C. Lassenius, “Subjective evaluation of software evolvability using code smells: An empirical study,” Empir. Softw. Eng., vol. 11, pp. 395-431, 2006,
http://dx.doi.org/10.1007/s10664-006-9002-8
[63] A. Al-Shaaby, H. Aljamaan, and M. Alshayeb, “Bad smell detection using machine learning techniques: a systematic literature review,” Arab. J. Sci. Eng., vol. 45, no. 4, pp. 2341-2369, 2020,
https://doi.org/10.1007/s13369-019-04311-w
[64] M. Mantyla, “Bad smells in software-a taxonomy and an empirical study,” PhD thesis, Helsinki University of Technology, 2003.
[65] A. Kaur, “A systematic literature review on empirical analysis of the relationship between code smells and software quality attributes,” Arch. Comput. Methods Eng., vol. 27, no. 4, pp. 1267-1296, 2020,
https://doi.org/10.1007/s11831-019-09348-6
[67] F. Sabir, F. Palma, G. Rasool, Y. G. Guéhéneuc, and N. Moha, “A systematic literature review on the detection of smells and their evolution in object‐oriented and service‐oriented systems,” Softw. Pract. Exp., vol. 49, no. 1, pp. 3-39, 2019,
https://doi.org/10.1002/spe.2639
[68] R. Marticorena, C. López, and Y. Crespo, “Extending a taxonomy of bad code smells with metrics,” Proc. 7th Int. Workshop Object Oriented Reeng. (WOOR), 2006: Citeseer, p. 6.
[69] P. Khamkhiaw, C. Doungsa-ard, and P. Phannachitta, “The Source Code Maintenance Time Classifications from Code Smell,” Int. Conf. Emerg. Internetwork. Data Web Technol., 2023: Springer, pp. 22-32,
https://doi.org/10.1007/978-3-031-26281-4_3
[71] M. Martin and R. C. Martin, “Agile principles, patterns, and practices in C.” Pearson Education, 2006.
[72] W. C. Wake, “Refactoring workbook.” Addison-Wesley Professional, 2004.
[73] G. Saranya, D. Mishra, V. Srikar, C. Abhilash, and S. Dooda, “Code Smell Detection Using a Weighted Cockroach Swarm Optimization Algorithm,” 2023 14th Int. Conf. Comput. Commun. Netw. Technol. (ICCCNT), 2023: IEEE, pp. 1-8,
https://doi.org/10.1109/ICCCNT56998.2023.10306683
[74] S. Jain and A. Saha, “Rank-based univariate feature selection methods on machine learning classifiers for code smell detection,” Evol. Intell., vol. 15, no. 1, pp. 609-638, 2022,
https://doi.org/10.1007/s12065-020-00536-z
[75] L. Bamizadeh, B. Kumar, A. Kumar, and S. Shirwaikar, “Design and Implementation of a Web-Based Application for Code Smells Repository,” Tehnički glasnik, vol. 15, no. 3, pp. 371-380, 2021,
https://doi.org/10.31803/tg-20210207102610
[76] Z. Yu and V. Rajlich, “Hidden dependencies in program comprehension and change propagation,” Proc. 9th Int. Workshop Program Comprehension (IWPC) 2001: IEEE, pp. 293-299,
https://doi.org/10.1109/WPC.2001.921739
[77] S. McConnell, “Code complete.” Pearson Education, 2004.