Document Type : Original Article
Authors
1
Ph.D. Candidate, Department of Civil Engineering, Larestan Branch, Islamic Azad University, Larestan, Iran
2
Department of Civil Engineering, Larestan Branch, Islamic Azad University, Larestan, Iran.
3
Ph.D. Department of Civil Engineering, East Tehran Branch, Islamic Azad UniversityIran, Tehran,
Abstract
Dams are one of the vital components of human societies and one of the strategically important assets of any society with a significant role in the sustainable development of the country. In this research, the damage caused by the blast of a double curvature arch concrete dam has been evaluated according to the mean velocity and frequency caused by the blast in the near-field. The model of the material used is the numerical simulation include the explosives, air, water, and concrete, which has been modeled. The problem-solving method used to apply the blast in modeling is Load Blast Enhanced. Using this method, the propagation of the pressure wave caused by the blast and finding the critical points of the dam body against the blast have been investigated. Then, the structural responses and the dam damage characteristics in different blast scenarios have been investigated according to the change in the blast depth, the distance from the concrete dam body, and the blast load. Also, by using vibration parameters such as peak velocity summation (PVS) and mean frequency (MF), the combined spectrum has been evaluated and proposed as a way to design a blast-resistant dam and find a safe standoff distance in case of emergency. Finally, two PVS-MF spectra have been suggested according to the charge weight and their distance for optimal and useful classification of dam damage according to three modes: slight, moderate, and severe, for initial and critical evaluation.
Keywords