[1] IAEA and FAO, “Guidelines for Agricultural Countermeasures Following an Accidental Release of Radionuclides,” International Atomic Energy Agency, Vienna, 1994.
[2] F. Bréchignac, L. Moberg, and M. Suomela, “Long-term environmental behavior of radionuclides,ˮ IPSN-CEC Association Final Report, 2000.
[3] R. Miller, “Effects of Radiation on Plants,ˮ Stanford University, 2015.
[4] M. Kordi and M. Saadati, “Nuclear Defense and its Effect on Reducing Contamination of Farm Animals and Livestock Products, ˮ Passive Defense, vol. 12(1), pp. 21-34, 2021. (In Persian).
DOR:20.1001.1.20086849.1400.12.1.3.9.
[5] L.R. Anspaugh, “Environmental consequences of the Chernobyl accident and their remediation: Twenty years of experience, ˮ No. IAEA-CN--141/CD, 2005.
[6] S. A. Geraskin, S. V. Fesenko, and, R. M. Alexakhin, “Effects of non-human species irradiation after the Chernobyl NPP accident,ˮ Environ. Int., vol. 34(6), pp. 880-897, 2008.
https://doi.org/10.1016/j.envint.2007.12.012.
[7] S. B. Bengtsson, “Interception and storage of wet deposited radionuclides in crops,ˮ Ph.D. Thesis. Swedish University of Agricultural Sciences, Uppsala, 2013.
[8] M. Brink, B. Lauritzen, and D. P. Directorate, “Agricultural countermeasures in the Nordic countries after a nuclear accident (No. NKS--51),ˮ Nordisk Kernesikkerhedsforskning, 2001.
[9] A. O. Adeola, K. O. Iwuozor, K. G. Akpomie, K. A. Adegoke, K. O. Oyedotun, J. O. Ighalo, J. F. Amaku, C. Olisah, and J. Conradie, “Advances in the management of radioactive wastes and radionuclide contamination in environmental compartments: a review,ˮ Environ. Geochem. Health., vol. 45(6), pp. 2663-2689, 2023. DOI:
10.1007/s10653-022-01378-7.
[10] H. Vandenhove and C. Turcanu, “Agricultural land management options following large scale environmental contamination,ˮ IEAM., vol. 7(3), pp. 385-387, 2011.
https://doi.org/10.1002/ieam.234.
[11] S. V. Fesenko, R. M. Alexakhin, M. I. Balonov, I. M. Bogdevitch, B. J. Howard, V. A. Kashparov, N. I. Sanzharova, A. V. Panov, G. Voigt, and Y. M. Zhuchenka, “An extended critical review of twenty years of countermeasures used in agriculture after the Chernobyl accident, ˮ Sci. Total Environ., vol. 383 (1), pp. 1-24, 2007.
https://doi.org/10.1016/j.scitotenv.2007.05.011.
[12] M. B. Adedokun, M. A. Aweda, P. P. Maleka, R. I. Obed, and A. Z. Ibitoye, “Evaluation of natural radionuclides and associated radiation hazard indices in soil and water from selected vegetable farmlands in Lagos,ˮ Nigeria. Environ. Forensics., vol. 23(3-4), pp. 301-313, 2022.
https://doi.org/10.1080/15275922.2020.1850557.
[13] M. Sato, K. Abe, H. Kikunaga, D. Takata, K. Tanoi, T. Ohtsuki, and Y. Muramatsu, “Decontamination effects of bark washing with a high-pressure washer on peach [Prunus persica (L.) Batsch] and Japanese persimmon (Diospyros kaki Thunb.) contaminated with radiocaesium during dormancy, ˮ Hort. J., vol. 84(4), pp. 295-304, 2015.
https://doi.org/10.2503/hortj.MI-054.
[14] N. Yamaguchi, I. Taniyama, T. Kimura, K. Yoshioka, and M. Saito, “Contamination of agricultural products and soils with radiocesium derived from the accident at TEPCO Fukushima Daiichi Nuclear Power Station: monitoring, case studies and countermeasures,ˮ J. Soil Sci. Plant Nutr., vol. 62(3), pp. 303-314, 2016.
https://doi.org/10.1080/00380768.2016.1196119.
[15] K. Miyashita, “Minimizing the Contamination of Agricultural Environment Toward Food Safety: With Primary Focus on the Fukushima Nuclear Disaster,ˮ Food and Fertilizer Technology Center, 2012. doi:10.5555/20143264110.