مدل‌سازی، پردازش و تفسیر داده‌های رادار نفوذی به زمین (GPR)به منظور شناسایی تونل‌های دفاعی به همراه یک مطالعه موردی

نویسندگان

1 دانشجوی دکتری دانشگاه تهران

2 دانشگاه امام حسین

چکیده .

اصولاً استفاده از تونل­های دفاعی یکی از اصلی‌ترین اقدامات دفاعی هر کشور است. شناسایی این اهداف مدفون یکی از مهم‌ترین و پیچیده‌ترین مسائل در حوزه پدافند غیرعامل می­باشد. روش رادار نفوذی زمین (GPR) یکی از سریع­ترین و بهترین روش­های آشکارسازی اهداف مدفون در حوزه روش­های الکترومغناطیس می­باشد. در این مطالعه، امکان آشکارسازی تونل­های زیرزمینی توسط روش GPR مورد بررسی و تحلیل میدانی قرار گرفته است. به این منظور، برداشت­هایی در موقعیت چندین تونل واقع در محوطه یک کارخانه به‌صورت آزمایشی توسط دستگاه GPR ساخت شرکت سوئدی Mala انجام شده است. تحلیل عمق دقیق دفن­شدگی تونل­ها، با اعمال پردازش­های متفاوت بر روی داده­های GPR و بررسی پاسخ این تونل­ها در محیط­های مختلف صورت گرفته است. براساس نتایج تجربی به­دست­آمده در این تحقیق، GPR برای تخمین طول، عرض و ارتفاع تونل­های زیرزمینی خصوصاً در عمق­های کم روشی مناسب است.

کلیدواژه‌ها


عنوان مقاله [English]

-

  1. E. M. Sepp, “Deeply Buried Facilities: Implications for Military Operations,” Project Report No. 14, Center for Strategy and Technology, Air War College, 2000.
  2. D. A. Linger, G. H. Baker, and R. G. Little, “Application of Underground Structures for the Physical Protection of Critcal Infrastructures,” In Proc. of North American Tunneling, 2002.
  3. A. Lance, M. Birrell, K. Borowski, S. Korth, N. Obermeyer, and E. Tesla, “Technologies for the Detection and Monitoring of Clandestine Underground Tunnels,” Project 03- 07, 2008.
  4. W. M. Telford, L. P. Geldart, and R. E. Sheriff, “Applied Geophysics,” Second edition, Cambridge University Press, 1990.
  5. L. G. Stolarczyka, R. Troublefield, and J. Battis, “Detection of Underground Tunnels with a Synchronized Electromagnetic Wave Gradiometer,” In proc. of Sensors and C3I Technologies for Homeland Security and Defense, 2005.
  6. M. Beres, M. Luetscher, and R.Olivier, “Integration of Ground Penetrating Radar and Microgravimetric Methods to Map Shallow Caves,” Journal of Applied Geophysics, vol. 46, pp. 249–262, 2001.
  7. A. Neal, “Ground Penetrating Radar and its Use in Sedimentology: principles, problems and progress,” Journal of Earth science reviews, vol. 66, pp. 261-330, 2004.
  8. J. M. Reynolds, “An introduction to applied end environmental geophysics,” John Wiley & Sons Ltd, 1997.
  9. R. Hamrouche, G. Klysz, J. P. Balayssac, S. Laurens, J. Rhazi, G. Ballivy, and G. Arliguie, “Numerical modeling of ground-penetrating radar (GPR) for the investigation of jointing defects in brick masonry structures,” In proc. of Non-Destructive Testing in Civil Engineering Nantes, France, 2009.
  10. M. A. G. Huici, “Accurate Ground Penetrating Radar Numerical Modeling for Automatic Detection and Recognition of Antipersonnel Landmines,” Ph.D. Thesis, Universität Bonn, 2012.
  11. A. Eshaghi, P. spiritually, and A. S. Rbamyry, “Compare and combine results processing, modeling and interpretation of electrical tomography and GPR data to identify targets and shallow subsurface structures,” Journal of EARTH science, vol. 92, pp. 3-10. 2011.
  12. H.Sahami, M. Y. Radan, D. Majidi, “Detecting Buried Underground Structures Using Simulation of Gravity Data,” The Scientitic Journal of Advanced Defance Science and Tachnology, vol. 1, pp. 81-94, 2012.
  13. M. Saif and S. Khzai, “Detection of Underground Targets Based on the Gravity Gradient Data Using the Euler Deconvolution Method,” Journal of Civil Defense, vol. 1, pp. 33-43, 2015.
  14. R. L. Van Dam and W. Schlager, “Identifying causes of ground-panetrating radar reflections using time-domain reflectometry and sedimentological analyses,” Sedimentology, vol. 47, pp. 435-449, 2000.
  15. H. Z. M. Shafri, R. S. A. Abdollah, M. Roslee, and R. Numiandy, “Optimization for ground penetrating radar (GPR) mixture model in road pevement density data analysis,” In proc. of Igarss, USA, 2008.
  16. K. Knödel, G. Langem and H. J. Voigt, “Environmental Geology: Handbook of Field Methods and Case Studies,” Book part 4, Springer-Verlag Berlin Heidelberg, 2007.
  17. J. M. Reynolds, “An introduction to applied and environmental geophysics,” 1997.
  18. A. Neal, “”Ground penetrating radar and its use in sedimentology: principles, problems and progress,” Earth Science Review, vol. 66, pp. 261-330, 2004.
  19. A. P. Annan, “Ground penetrating radar,” Workshop of Sensors and software, 2001.
  20. D. S. Parasnis, “Principles of applied geophysics,” fifth edition, John Wiley, 1997.
  21. Sensors and software Inc., “EKKO Project User’s Guide,” Canada, 1999.
  22. S. Parnow, “Processing, modeling and interpretation of GPR data to define the depth, thickness and extent of glaciers in the side of the mountain region of Mazandaran,” MSc. thesis, Shahrood University of Technology, 2014.
  23. M. Mohammadi Vije, “processing, modeling and interpretation of GPR data in the area anymore and comparing its results with Geoelectric,” Shahrood University of Technology, 2006.
  24. K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Transactions on Antennas Propagation, vol. 14, no. 3, pp. 302-307, 1966.
  25. J. Irving and R. Knight, “Numerical Modeling of Ground-Penetrating Radar in 2-D Using MATLAB,” Compuation Geosciencs, vol. 32, no. 9, pp. 1247-1258, 2006.
  26. R. Knight, “Ground penetrating radar for environmental applications,” Annu. Rev. Earth Planet. Sci., vol. 29, pp. 229–255, 2001.
  27. V. F. Ahmadi, N. Athiyan Poor, and GH. Norozi, “Improving Ground Penetrating Radar (GPR) forward modeling approach using the numerical finite difference method,” Journal of Geophysical Iran, vol. 8, no. 3, pp. 113-129, 2014.