بهینه سازی مسیر حرکت پهپادها جهت بیشترین پوشش در تهیه تصاویر

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه مالک اشتر

چکیده

پهپادها امروزه جایگاه مهمی در مجموعه قدرت نظامی علی­الخصوص در حوزه پدافند غیرعامل در کشورهای مختلف دنیا کسب کرده­اند. این مجموعه با تکیه بر توان اجرای عملیات در شب و روز در مناطق دور و نزدیک بر ضد اهداف ساکن و متحرک و در تمام شرایط آب و هوایی و امکان پروازهای هدایت شونده از دور و یا تمام خودکار، دستاوردهای نظامی و سیاسی بسیار مهمی را در منازعات نظامی سال­های اخیر به­دست آورده­اند. مهمترین هدف این تحقیق تهیه بهترین مسیر برای پهپاد­ها به شکلی که بیشینه پوشش منطقه در حین پرواز حاصل شود. یکی از عملیاتﻫﺎ در ﺳﺎﻣﺎﻧﻪ­ﻫﺎی اﻃﻼﻋﺎت مکانی ﻣﺤﺎﺳﺒﻪ دید در لایه­هایی ﺑﺎ ﺳﺎﺧﺘﺎر ﺷﺒﮑﻪای اﺳﺖ. در این تحقیق سعی شده است الگوریتمی توسعه داده شود که با استفاده از مدل رقومی ارتفاعی منطقه و مدل­های ریاضی، نقشه دید سنجنده­های پهپاد به­دست آید. سپس نتایج به­دست­آمده بر روی نقشه مدل رقومی ارتفاعی به صورت گرافیکی نمایش داده شده است. این الگوریتم برای تمامی پیکسل­های موجود در نقشه مدل رقومی ارتفاعی اجرا شده و پیکسل­هایی که دارای بیشترین نواحی دید هستند بر روی نقشه مشخص می­شوند. در انتها مسیری برای این پیکسل­های ذخیره شده برازش داده شده و بعد از انجام پردازش‌های لازم مسیر نهایی پرواز پهپاد مشخص می­شود. مشخصه اصلی مسیر نهایی این است که پهپاد با کمترین مسافت پرواز، می‌تواند بیشترین پوشش را در کسب اطلاعات از دشمن داشته باشند. در نهایت در نرم­افزار متلب مسیر نهایی با مسیر اولیه مقایسه شده مشاهده می­شود که حدودا 83% مطابقت دارند.

کلیدواژه‌ها


عنوان مقاله [English]

UAV Rout Optimization for Maximum Coverage in Images

چکیده [English]

Nowadays UAVs have gained an important role in the military especially in the passive defence in different countries of the world. These tools are based on the ability to carry out day-and-night operations for near or remote areas, against static or dynamic targets, in all weather conditions, and the possibility of flights in guided or automatic manners which have gained military and political achievements in recent years conflicts. The main objective of this study is providing the optimization path for UAVs in a way that maximizes the coverage of the area during flights. One of the analyses in Geo-Spatial Information Systems is the line-of-sight analysis in the raster data model. In this research, an algorithm is developed to obtain a visibility map of the UAVs’ sensors by using the Digital Elevation Model and mathematical models. Then, the obtained results are displayed graphically on the Digital Elevation Model. This algorithm is implemented for all pixels in the DEM and the pixels with the most visibility areas are pointed in the map. At the end, a path for these stored pixels is fitted and, after performing the necessary procedures, the final flight path of the UAV will be specified. The main characteristic of the final route is that a UAV with the shortest flight can provide the most coverage for information from the enemy. Finally, in the MATLAB software, by comparing the first route and the final map, there is about 83% overlap.       

کلیدواژه‌ها [English]

  • Optimization
  • UAV
  • Maximum Coverage
  • Digital Elevation Model
  1. Y. Chen, J. Yu, Y. Mei, Y. Wang, and X. Su, “Modified central force optimization (MCFO) algorithm for 3D UAV path planning,” Neurocomputing, vol. 171, pp. 878-888, 2016.##
  2. A. Bircher, M. Kamel, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, and R. Siegwart, “Three-dimensional coverage path planning via viewpoint resampling and tour optimization for aerial robots,” Autonomous Robots, vol. 40, no. 6, pp. 1059-1078, 2016.##
  3. J. Zillies, S. Westphal, D. Thakur, V. Kumar, G. Pappas, and D. Scheidt, “A column generation approach for optimized routing and coordination of a UAV fleet in Safety, Security, and Rescue Robotics (SSRR),” IEEE International Symposium on., 2016.##
  4. W. Yao, N. Wan, and N. Qi, “Hierarchical path generation for distributed mission planning of UAVs,” in Decision and Control (CDC), IEEE 55th Conference on. 2016.##
  5. J. Jayasinghe, and A. Athauda, “Smooth trajectory generation algorithm for an unmanned aerial vehicle (UAV) under dynamic constraints: Using a quadratic Bezier curve for collision avoidance,” in Manufacturing & Industrial Engineering Symposium (MIES), IEEE, 2016.##
  6. D. Gentilini, N. Farina, E. Franco, A. Elena Tirri, D. Accardo, R. Moriello, and L. Angrisani, “Multi agent path planning strategies based on Kalman Filter for surveillance missions,” in Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), IEEE 2nd International Forum on. 2016.##
  7. S. Majumder and M. S. Prasad, “Three dimensional D* algorithm for incremental path planning in uncooperative environment,” in Signal Processing and Integrated Networks (SPIN), 3rd International Conference on., IEEE, 2016.##
  8. A. Fujimori, M. Kurozumi, P. Nikiforuk, and M. Gupta, “Flight control design of an automatic landing flight experiment vehicle,” Journal of Guidance, Control, and Dynamics, vol. 23, no. 2 , pp. 373-376, 2000.##
  9. W. Jia-qiu, G. Zhang, and H. Xiao, “The applications of ArcGIS analyzing visibility in lookout management [J],” Hunan Forestry Science and Technology, vol. 2, 2005.##
  10. G. Garnero and E. Fabrizio, “Visibility analysis in urban spaces: a raster based approach and case studies,” Environment and Planning B: Urban analytics and City Science, vol. 42, no. 4, pp. 688-707, 2010.##
  11. D. O'Sullivan and A. Turner, “Visibility graphs and landscapes visibility analysis,” vol. 15, no. 3, pp. 221-237, 2001.##
  12. D. P. Boyle and G. E. Chamitoff, “Autonomous maneuver tracking for self-piloted vehicles,” Journal of Guidance, Control, and Dynamics, vol. 22, no. 1, pp. 58-67, 1999.##
  13. D. E. Kirk, “Optimal control theory: an introduction, Courier Corporation,” 2012.##
  14. B. D. Anderson and J. B. Moore, “Optimal control: linear quadratic methods,” Courier Corporation, 2007.##
  15. Z. Zheng, Y. Liu, and X. Zhang, “The more obstacle information sharing, the more effective real-time path planning?,” Knowledge-Based Systems, vol. 114, pp. 36-46, 2016.##
  16. F. Xiaowei and G. Xiaoguang, “Multi-UAVs cooperative control in communication relay,” in Signal Processing, Communications and Computing (ICSPCC), IEEE International Conference on. IEEE, 2016.##
  17. S. Zhichao, J. Wu, J. Yang, Y. Huang, C. Li, and D. Li, “Path Planning for GEO-UAV Bistatic SAR Using Constrained Adaptive Multiobjective Differential Evolution,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 11, pp. 6444-6457, 2016.##
  18. S. Jafer and S. Jones, “Simulation of 4G cellular communication for unmanned air vehicles (UAVs),” in Proceedings of the 49th Annual Simulation Symposium, Society for Computer Simulation International, 2016.##
  19. L. E. Dubins, “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents,” American Journal of mathematics, vol. 79, no. 3, pp. 497-516, 1957.##
  20. H. Chen, Y. Liu, and Y.-L. Du, “Path planning of unmanned aerial vehicle,” Journal of Computer Applications, vol. 31, no. 9, pp. 2574-2576, 2011.##
  21. I. D. Moore, R. Grayson, and A. Ladson, “Digital terrain modelling: a review of hydrological, geomorphological, and biological applications,” Hydrological processes, vol. 5, no. 1, pp. 3-30, 1991.##
  22. J. F. O'Callaghan and D. M. Mark, “The extraction of drainage networks from digital elevation data,” Computer vision, graphics, and image processing, vol. 28, no. 3, pp. 323-344, 1984.##
  23. Z. Rostami, M. Najafi, and M A. Khosrobabaei, “Simulation & Presentation of Optimized Techniques for Stealth Airborne Electronic Warfare Systems Using by OFDM Modulation,” Passive Defense Quarterly, vol. 8, no. 3, pp. 77-86, 2017. (in Persian)##
  24. B. Doosti Sabzi, Sh. Isaloo, Y. Abdali, “Spatial Analysis of Structural- Physical Vulnerability of Residential Land Use with Passive Defense Approach using GIS System (A Case Study: Ahvaz Zone 6),”Passive Defense Quarterly, vol. 9, no. 2, 2018. (in Persian)##