عوامل مؤثر بر پذیرش فناوری اطلاعات و شبکه‌های اجتماعی در ارائه راه‌کارهای پدافند غیرعامل در برابر مخاطرات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی کامپیوتر، دانشکده فنی و مهندسی، دانشگاه تربت حیدریه، تربت حیدریه، ایران

2 گروه مهندسی کامپیوتر، دانشکده فنی و مهندسی، دانشگاه تربت‌حیدریه، تربت‌حیدریه، ایران

چکیده .

آگاهی، اطلاع‌رسانی و آمادگی از راه‌کارهای پدافند غیرعامل در برابر زلزله است. تأثیر فناوری اطلاعات و شبکه‌های اجتماعی بر روی موارد مختلف از جمله آموزش توجه زیادی را به خود جلب کرده است، با این‌حال بر اساس بررسی نویسندگان تا به حال، هیچ مطالعاتی در ایران در زمینه تأثیر و عوامل مؤثر بر پذیرش فناوری اطلاعات و ارتباطات و شبکه‌های اجتماعی در راه‌کارهای پدافند غیرعامل برای زلزله مورد بررسی قرار نگرفته است. در این تحقیق تأثیر فناوری اطلاعات و ارتباطات و شبکه‌های اجتماعی بر روی راه‌کارهای پدافند غیرعامل شامل آمادگی، آگاهی و کاهش خطر در برابر زلزله مورد بررسی قرار می­گیرد. جامعه آماری را شهر تربت‌حیدریه تشکیل می‌دهد؛ که به روش نمونه‌گیری تصادفی ساده،400 نفر از آن‌ها به‌عنوان نمونه انتخاب‌شده‌اند. به‌منظور بررسی فرضیات و متغیرهای تحقیق از نرم‌افزار SPSS-PLS استفاده ‌شده است. نتایج تحقیق نشان می‌دهد که در بین راه‌کارهای پدافند غیرعامل برای زلزله، یعنی بین آگاهی، آمادگی بقا و کاهش خطر با برنامه‌ریزی آمادگی رابطه معنی‌دار و مثبت دارد و آمادگی بقا با کاهش خطر رابطه مثبت و معنی دارد. همچنین از عوامل مؤثر و مثبت بر آگاهی در برابر زلزله می‌توان سن، میزان درآمد، تحصیلات و همچنین میزان اطلاعات به‌دست‌آمده درباره زلزله از راه­های مختلف را نام برد. علاوه­بر­این مؤلفه‌های، نگرش و سهولت ادراک‌شده از طریق سودمندی ادراک‌شده بر قصد استفاده از اینترنت، تلگرام و تلویزیون برای کسب آگاهی در برابر زلزله تأثیر مثبت و معنادار دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Effective Factors in Acceptance of Information Technology and Social Networks for Presenting Passive Defense Strategies

نویسندگان [English]

  • M. Esmaeilpour 1
  • A. Maroosi 2
1 Department of Computer Engineering, University of Torbat Heydarieh, Torbat Heydarieh, Iran
2 Department of Computer Engineering, University of Torbat Heydarieh, Torbat Heydarieh, Iran
چکیده . [English]

Awareness, information and preparedness are important passive defense strategies against earthquake. Information technology and social networks attract much attention in many areas especially in education. To the best of our knowledge the effects of information and communication technology (ICT) and social networks on passive defense strategies for disasters such as earthquakes have not been investigated in Iran. This study, investigates the effect of ICT and social networks on passive defense strategies including preparedness, awareness and risk reduction. 400 individuals which are selected randomly in Torbat Heydarieh city form the statistical population. SPSS and PLS softwares are used to analyse the hypotheses and variables of the research. The results of the study show that preparedness planning has positive and significant relationships with awareness, survival preparedness, and hazard mitigation. Age, income, education and acquired knowledge about earthquakes also hold significant relationships with awareness. In addition, attitude and perceived ease of use have a positive and significant effect through perceived usefulness on the intention to use the Internet, Telegram, and television to acquire knowledge about earthquakes.

کلیدواژه‌ها [English]

  • Passive defense
  • information technology
  • awareness
  • risk mitigation
  • earthquake
  1. 1. M. B. Fard and K. Taghizadeh, “The Absence of an Effective Relationship between Architecture and Passive Defense in Academic Fields,” Passive Def. Q., vol. 9, no. 4, pp.79-91, 2018. (In Persian)##

    1. 2.  A. Maroofi, J. Sajadi, and H. Rostami, “Infrastructure’s Vulnerability Assessment of West Azerbaijan Province with Passive Defense Approach,” Passive Def. Q., vol. 10, no. 1, pp. 97-108, 2019. (In Persian)##
      1. S. Maleki and R. Sarvestan, “Safety Assessment of Ilam and Providing Defensive Strategies from the Perspective of Civil Defense,” Passive Def. Q., vol. 7, no. 3, pp. 47-56, 2016. (In Persian)##

    4. R. Nazarpour Dezaki et al, “Vulnerability  Evaluation  of  Physicsl  and  Social of  the Cities  with  Respect  to  Passive Defense (Case Study: Distict  One of  Ahwaz),” Passive Def. Q., vol. 9, no. 1, pp. 253-245, Spring 2018. (In Persian)##

    5. M. H. Khanzade et al, “Improving power system stability after contingency occurrence on the Basis of Distributed Artificial Intelligence,” Adv. Def. Sci. Tech., vol. 6, no. 4, pp. 245-253, 2015. (In Persian)##

    6. S. Samar, M. Ghani, and F. Alnaser, “Predicting customer’s intentions to use internet banking: the role of technology acceptance model (TAM) in e-banking,” Environ. Res. Lett., vol. 7, pp. 513-524, 2017.##

    1. H. Toya and M. Skidmore, “Information/communication technology and natural disaster vulnerability,” Econ. Lett., vol. 137, pp. 143-145, 2015.##

    8. M. Rahman, S. Rahman, S. Mansoor, V. Deep, and M. Aashkaar, “Implementation of ICT and wireless sensor networks for earthquake alert and disaster management in earthquake prone areas,” Procedia Comput. Sci., vol. 85, pp. 92-99, 2016.##

    9. H. Baytiyeh and A. Öcal, “High school students’ perceptions of earthquake disaster: A comparative study of Lebanon and Turkey,” Int. J. Disaster Risk Reduct., vol. 18, pp. 56-63, 2016.‏##

    1. MCEER, “Strategic Plan 2000," Multidisciplinary Center for Earthquake Engineering Research, 2000.##
    2. E. Verrucci, G. Perez-Fuentes, T. Rossetto, L. Bisby, M. Haklay, D. Rush, P. Rickles, G. Fagg, and H. Joffe, “Digital engagement methods for earthquake and fire preparedness: a review,” Nat. Hazards, vol. 83, pp. 1583-1604, 2016.##
    3. R. Muttarak and W. Lutz, “Is education a key to reducing vulnerabilty to natural disasters and hence unavoidable climate change,” Ecol. Soc., vol. 19, pp. 42-52, 2014.##
    4. B. M. Reininger, M. H. Rahbar, M. Lee, Z. Chen, S. R. Alam, J. Pope, and  B. Adams, “Social capital and disaster preparedness among low income Mexican Americans in a disaster prone area,” Soc. Sci. Med. , vol. 83, pp. 50-60, 2013.##
    5. M. K. Lindell and R. W. Perry, “Household adjustment to earthquake hazard: A review of research,” Environ. Behav., vol. 32, no. 4, pp.461-501, 2000.##
    6. H. Baytiyeh and A. Öcal, “High school students’ perceptions of earthquake disaster: A comparative study of Lebanon and Turkey,” Int. J. Disaster. Risk Reduct., vol. 18, pp. 56-63, 2016.##
    7. A. A. Kirschenbaum, C. Rapaport, and D. Canetti, “The impact of information sources on earthquake preparedness,” Int. J. Disaster. Risk. Reduct., vol. 21, pp. 99-109, 2017.##
    8. Q. Mahmood and R. Nastaran, “Analysis of the difference between readiness of Shiraz local meeting communities against earthquake,” J. Plann. Space Plann., vol. 17, no. 2, p. 91-71, 2013, (In Persian).##
    9. R. Muttarak and W. Pothisiri, “The role of education on disaster preparedness: case study of 2012 Indian Ocean earthquakes on Thailand’s Andaman Coast," Ecol. Soc., vol. 18, pp. 1-16, 2013.##
    10. V. M. Cvetković and J. Stanišić, “Relationship between demographic and environmental factors and knowledge of secondary school students on natural disasters,” J. Geogr. Inst. Jovan Cvijic, SASA, vol. 65, no. 3, pp. 323-340, 2015.##
    11. V. M. Cvetković, S. Dragićević, M. Petrović, S. Mijalković, V. Jakovljević, and J. Gačić, “Knowledge and Perception of Secondary School Students in Belgrade about Earthquakes as Natural Disasters,” Pol. J. Environ. Stud., vol. 24, pp. 1553-1561, 2015.##
    12. H. Baytiyeh and M. Naja, “The effects of fatalism and denial on earthquake preparedness levels,” Disaster Prev. Manag., vol. 25, pp.154-167, 2016.##
    13. J. S. Jia, J. Jia, C. K. Hsee, and B. Shiv, “The role of hedonic behavior in reducing perceived risk: evidence from postearthquake mobile-app data,” Psychol. Sci., vol. 28, no. 1, pp. 23-35, 2017.‏##
    14. M. ur Rahman, S. Rahman, S. Mansoor, V. Deep, and M. Aashkaar, “Implementation of ICT and wireless sensor networks for earthquake alert and disaster management in earthquake prone areas,” Procedia Comput. Sci., vol. 85, pp. 92-99, 2016.##
    15. A. Ryoko, “Social Media in a Disaster: Technology, Ethics and Society in Tōhoku in March 2011,” In Tetsugaku Companion to Japanese Ethics and Technology, pp. 219-233, Springer, Cham, 2019.##
    16. F. Shang, K. Kaniasty, S. Cowlishaw, D. Wade, H. Ma, and D. Forbes, “Social support following a natural disaster: A longitudinal study of survivors of the 2013 Lushan earthquake in China,” Psychiatr Res., vol. 273, pp. 641-646, 2019.##
    17. E. Beck, S. Cartier, L. Colbeau-Justin, C. Azzam, and M. Saikali, “Vulnerability to earthquake of Beirut residents (Lebanon): perception, knowledge, and protection strategies,” J. Risk. Res., vol. 1, pp. 1-18, 2018.##
    18. J. D. Freeman, B. Blacker, G. Hatt, S. Tan, J. Ratcliff, T. B. Woolf, and D. J. Barnett, “Use of big data and information and communications technology in disasters: an integrative review,” Disaster Med. Publ. Health prep., vol. 13, no. 2, pp. 353-367, 2019.##
    19. L. Li, Q. Zhang, J. Tian, and H. Wang, “Characterizing information propagation patterns in emergencies: A case study with Yiliang Earthquake,” Int. J. Inform. Tech. Manag., vol. 38, no.1, pp. 34-41, 2018.##
    20. C. H. Lai, A. Arul, and R. Ling, “Digital disparities and vulnerability: mobile phone use, information behaviour, and disaster preparedness in Southeast Asia, “Disasters vol. 42, no. 4, pp. 734-760, 2018.##
    21. M. Jahangiri, M. Honarbakhsh, N. A. Kaji, A. Rajabi, “An Evaluation of the Level of Preparedness, Knowledge, and Risk Perception Regarding Earthquake among the Personnel of Shiraz University of Medical Sciences, Iran in 2013,” J. Health Syst. Res., vol. 12, no. 2, pp. 125-131, Summer 2016, (In Persian).##
    22. D. Paton, E. Anderson, J. Becker, and J. Petersen, “Developing a comprehensive model of hazard preparedness: lessons from the Christchurch earthquake,” Int. J. Disaster Risk. Reduct., vol. 14, pp. 37-45, 2015.##
    23. J. P. Mulilis, T. S. Duval, and R. Lippa, “The effects of a large destructive local earthquake on earthquake preparedness as assessed by an earthquake preparedness scale,” Nat. Hazards, vol. 3, pp. 357-371, 1990.##
    24. F. D. Davis, “Perceived usefulness, perceived ease of use, and end user acceptance of information technology,” MIS Q., vol. 13, pp. 318 – 339, 1989##
    25. I. M. Klopping, E. McKinney, “Extending the technology acceptance model and the task-technology fit model to consumer e-commerce,” Inform. Tech. Learn. Perform. J., vol. 22, pp. 35-48, 2004.##
    26. S. Sternad, M. Gradisar, and S. Bobek, “The influence of external factors on routine ERP usage,” Ind. Manag. Data Syst., vol. 111, pp. 1511-1530, 2011.##
    27. S. Sulistiyarini, “Pengaruh Minat Individu Terhadap Penggunaan Mobile Banking: Model Kombinasi Technology Acceptance Model (TAM) dan Theory of Planned Behavior (TPB),” Jurnal Ilmiah Mahasiswa FEB, vol. 1, no. 2, 2012.##
    28. J.Q. Dong, “User acceptance of information technology innovations in the remote areas of China,” Int. J. Knowl. Base Innovation China, vol. 3, pp. 44-53, 2011.##
    29. F. D. Davis, “Perceived usefulness, perceived ease of use, and end user acceptance of information technology,” MIS Q., vol. 13, pp. 318 – 339, 1989.##
    30. V. Venkatesh, M. G. Morris, M. Hall, G. B. Davis, F. D. Davis, and S. M. Walton, “User acceptance of information technology: Toward a unified view,” MIS Q., vol. 27(3), 425–478, 2003.##
    31. G. K. Wong, “The behavioral intentions of Hong Kong primary teachers in adopting educational technology,” Educ. Technol. Res. Dev., vol. 64, pp. 313-338, 2016.##
    32. N. Nistor, T. Lerche, A. Weinberger, C. Ceobanu, and O. Heymann, “Towards the integration of culture into the Unified Theory of Acceptance and Use of Technology,” Br. J. Educ. Technol., vol. 45, pp. 36-55, 2014.##
    33. W.W. Chin, “The partial least squares approach to structural equation modeling,” Mod. Methods Bus. Res., vol. 295, no. 2, pp. 295-336, 1998.##
    34. J. Henseler, C. M. Ringle, and R. R. Sinkovics, “The use of partial least squares path modeling in international marketing, ”Adv. Int. Market, vol. 20, pp. 277-320, 2009.##
    35. L.T. Hu, P. M. Bentler, “Fit Indices in Covariance Structure Modeling: Sensitivity to Underparameterized Model Misspecification,” Psychol. Methods, vol. 3, pp. 424-453, 1998.##
    36. P. M. Bentler and D. G. Bonett, “Significance Tests and Goodness-of-Fit in the Analysis of Covariance Structures,” Psychol. Bull., vol. 88, p. 588, 1980.##
    37. T. K. Dijkstra and J. Henseler, “Consistent and Asymptotically Normal PLS Estimators for Linear Structural Equations,” Comput. Stat. Data Anal., vol. 81, pp. 10-23, 2015. ##
    38. M. Sarstedt and J. H. Cheah, “Partial least squares structural equation modeling using SmartPLS: a software review,” J. Market. Anal., vol. 7, pp. 1-7, 2019.##

    48.  B. Basarir-Ozel and S. Mardikya, “Factors affecting E-commerce adoption: A case of Turkey,” Int. J. Manag. Sci. Tech. Inform., vol. 23, pp. 1-11, 2017.##

    1. S. F. Wamba, M. Bhattacharya, L. Trinchera, and E.W. Ngai, “Role of intrinsic and extrinsic factors in user social media acceptance within workspace: Assessing unobserved heterogeneity,” Int. J. Inform. Manag. vol. 37, pp. 1-13, 2017.##