شبیه سازی عامل مبنای عملیات امداد و نجات در حملات هوا پایه با تأکید بر تخصیص وظایف بین گروه ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیئت علمی گروه مهندسی نقشه برداری، دانشکده علوم زمین، دانشگاه صنعتی اراک، اراک، ایران

2 کارشناسی ارشد جغرافیا، مسئول اداره اطلاعات مکانی، سازمان پدافند غیرعامل کشور

چکیده

سامانه­های چندعاملی (MAS) بـا شبیه­سازی اجزای یک سامانه پیچیده بـه‌عنـوان عامـل­های هوشـمند و پیاده­سازی شاخص­های تصمیم‌گیری آن امکان پیش‌آگاهی از شرایط بحرانی را فراهم می­کنند. هدف اصلی این مقاله شبیه­سازی عملیات امداد و نجات در حملات هواپایه و افزایش کـارایی گروه­های امداد و نجات در شرایط بحرانی می­باشد. پیاده­سازی سامانه شبیه­سازی در منطقه­ 3 تهران در چهار بخش اصلی انجام شد: 1) اولویت­دهی منطقه با روش تاپسیس (TOPSIS) در محیط GIS، 2) شبیه­سازی محیط عملیات با لحاظ عامل­های دخیل (عامل­های­ جست‌وجوگر، آزادساز و تیم پزشکی) با نرم‌افزار AnyLogic، 3) تعریف نحوه­ همکاری و تخصیص وظایف بین عامل­ها، 4) ایجاد سناریوها و تحلیل نتایج مختلف.
نقشه­ی اولویت زیرساخت­ها نشان داد که 21% از بلوک­های شهری در اولویت 1 حمله­ دشمن و به ترتیب 18، 29، 22 و 10 درصد در اولویت‌های 2 تا 5 قرار دارند. با پیاده­سازی شبیه‌ساز مشاهده شد که با دو برابر کردن تعداد نیروهای امدادی در سناریوهای مختلف زمان عملیات 47% و تعداد نفرات فوت‌شده 9% کاهش می­یابد. نتایج نشان‌دهنده‌ قابلیت استفاده از سامانه­های چندعاملی در طراحی سامانه شبیه‌ساز و مدل­سازی اجزاء تصمیم گیر بود. شبیه‌ساز ایجاد شده می­تواند در مدیریت، تصمیم­گیری و پیش‌بینی میزان آسیب­پذیری ناشی از حملات هواپایه استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Agent-Based Rescue Simulation During Airstrikes with an Emphasis on Task Allocation Between Groups

نویسندگان [English]

  • N. Hooshangi 1
  • H. Rostami 2
1 Department of Surveying Engineering, Arak University of Technology, Arak, Iran
2 M.Sc. of Geography, Iran’s Passive Defense Organization
چکیده [English]

Multi-agent systems (MASs) provide the possibility of prediction in critical situations by simulating the components of a complex system as intelligent agents and implementing its decision-making parameters. The main objective of this paper is to simulate the search and rescue operations for airstrikes (simulation of search, rescue and medical agents) and to increase the effectiveness of rescue teams in critical situations. Implementation of this system was carried out in district 3 of Tehran in three main phases: 1) prioritization of the area with the technique for the order of preference by similarity to the ideal solution (TOPSIS) in the GIS environment, 2) simulating the operating environment and establishing cooperation between the rescue groups by the AnyLogic software, and 3) creating scenarios and analyzing the different results. The infrastructure priorities’ map showed that 21 percent of the city’s blocks in the region were priority number one to enemy air attack and the other 18, 29, 22 and 10 percentages were in the second to fifth priorities, respectively.  Implementation of a simulator system revealed that, by doubling the number of rescue forces in different scenarios, the average time of operation was decreased by 47% and the number of fatalities decreased by 9%. The results indicate the value of using multi-agent systems in designing a search and rescue simulator system and modeling the decision-making components. The output of this article can be used to manage, decide, and predict the extent of the damage caused by air attacks.

کلیدواژه‌ها [English]

  • Airstrikes
  • Geospatial Information System
  • Agent-based Simulation
  • Cooperation Between Agents

Smiley face

  1.  

    1. F. Taillandier, P. Taillandier, E. Tepeli, D. Breysse, R. Mehdizadeh, and F. Khartabil, “A Multi-Agent Model to Manage Risks in Construction Project (SMACC),” Automat. Constr., vol. 58,  pp. 1-18, 2015.##
    2. H. Aghammohammadi, M. S. Mesgari, and R. Nourju, “Spatial Modeling for Earthquake Crisis Damage Reduction in Iran,” Geopatial Information Systems Conference, 2005. (In Persian)##
    3. M. Sharifi Sade, “Team Building and Teamwork in Rescue Operations (with Emphasis on Search and Rescue Teams),” Institute of Higher Education Crescent Iran, pp. 1-160, 1391. (In Persian)##
    4. O. Kwon, G. P. Im, and K. C. Lee, “MACE-SCM: A Multi-Agent and Case-Based Reasoning Collaboration Mechanism for Supply Chain Management under Supply and Demand Uncertainties,” Exoert. Syst. Appl., vol. 33, no. 3, pp. 690-705, 2007.##
    5. G. I. Hawe, G. Coates, D. T. Wilson, and R. S. Crouch, “Agent-Based Simulation of Emergency Response to Plan the Allocation of Resources for a Hypothetical Two-Site Major Incident,” Eng. Appl. Artif. Intel., vol. 46,  pp. 336-345, 2015.##
    6. N. Hooshangi, and A. A. Alesheikh, “Agent-Based Task Allocation under Uncertainties in Disaster Environments: An Approach to Interval Uncertainty,” Int. J. Disast. Risk Re., vol. 24,  pp. 160-171, 2017.##
    7. D. Fecht, L. Beale, and D. Briggs, “A GIS-based Urban Simulation Model for Environmental Health Analysis,” Environ. Model Softw., vol. 58, pp. 1-11, 2014.##
    8. N. Hooshangi and A. A. Alesheikh, “Developing an Agent-Based Simulation System for Post-Earthquake Operations in Uncertainty Conditions: A Proposed Method for Collaboration among Agents,” ISPRS Int. GEO-INF, vol. 7, no. 1, p. 27, 2018.##
    9. N. T. N. Anh, J. D. Zucker, N. H. Du, A. Drogoul, and V. D. An, “Hybrid Equation-Based and Agent-Based Modeling of Crowd Evacuation on Road Network,” Proc. ICCS, 2012.##
    10. A. Y. Grinbergerand D. Felsenstein, “Dynamic Agent Based Simulation of Welfare Effects of Urban Disasters,” Comput. Environ. Urban, vol. 59,  pp. 129-141, 2016.##
    11. T. Takahashi, S. Tadokoro, M. Ohta, and N. Ito, “Agent Based Approach in Disaster Rescue Simulation From Test-Bed of Multiagent System to Practical Application,” RoboCup 2001: Robot Soccer World Cup V., Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.##
    12. M. Choi, R. Starbuck, S. Lee, S. Hwang, S. Lee, M. Park, and H. S. Lee, “Distributed and Interoperable Simulation for Comprehensive Disaster Response Management in Facilities,” Automat Constr., vol. 93,  pp. 12-21, 2018.##
    13. C. Fikar, P. Hirsch, and P. C. Nolz, “Agent-Based Simulation Optimization for Dynamic Disaster Relief Distribution,” Cent. Eur. J. Oper. Res., vol. 26, no. 2, pp. 423-442, 2018.##
    14. O. Shehory and S. Kraus, “Methods for Task Allocation via Agent Coalition Formation,” Artificial Intelligence, vol. 101, no. 1, pp. 165-200, 1998.##
    15. A. Edrissi, H. Poorzahedy, H. Nassiri, and M. Nourinejad, “A Multi-Agent Optimization Formulation of Earthquake Disaster Prevention and Management,” Eur. J. Oper. Res., vol. 1, no. 229, pp. 261-275, 2013.##
    16. J. Wu, “Contract net protocol for coordination in multi-agent system,” Intelligent Information Technology Application, Second International Symposium on IITA'08, 2008.##
    17. L. F. Bertuccelli, H.-L. Choi, P. Cho, and J. P. How, “Real-Time Multi-UAV Task Assignment in Dynamic and Uncertain Environments,” Presentado al AIAA Guidance, Navigation and Control Conference, Chicago, Illinois, 2009.##
    18. H. Lee, and K. al-yafi, “Centralized Versus Market-Based Task Allocation in the Presence of Uncertainty,” EKC2009 Symposium Information, EU-Korea, 2010.##
    19. J. Wang, Y. Gu, and X. Li, “Multi-Robot Task Allocation Based on Ant Colony Algorithm,” Journal of Computers, vol. 7, no. 9, pp. 2160-2167, 2012.##
    20. S. C. Botelho and R. Alami, “M+: A Scheme for Multi-Robot Cooperation through Negotiated Task Allocation and Achievement,” IEEE International Conference on Robotics and Automation, 1999.##
    21. H.-L. Choi, L. Brunet, and J. P. How, “Consensus-Based Decentralized Auctions for Robust Task Allocation,” IEEE Transactions on Robotics, vol. 25, no. 9, pp. 912-926, 2009.##
    22. D. Di Paola, D. Naso, and B. Turchiano, “Consensus-Based Robust Decentralized Task Assignment for Heterogeneous Robot Networks,” Proceedings of the 2011 American Control Conference IEEE, 2011.##
    23. J. Chen and D. Sun, “Coalition-Based Approach to Task Allocation of Multiple Robots with Resource Constraints,” IEEE T Autom. Sci. Eng., vol. 9, no. 3, pp. 516-528, 2012.##
    24. Z. Xiao, S. Ma, and S. Zhang, “Learning Task Allocation for Multiple Flows in Multi-Agent Systems,” International Conference on Communication Software and Networks, 2009.##
    25. D. D. Corkill, “Blackboard Systems,” AI expert., vol. 6, no. 9,  pp. 40-47, 1991.##
    26. X. Su, M. Zhang, and Q. Bai, “Coordination for Dynamic Weighted Task Allocation in Disaster Environments with Time, Space and Communication constraints,” J. Parallel Distr. Com., vol. 97,  pp. 47-56, 2016.##
    27. N. Hooshangi and A. A. Alesheikh, “Developing an Agent-Based Simulation System in Rescue Operation,” Scientific Research Quarterly of Geographical Data, vol. 26, no. 103, pp. 59-70, 2017. (In Persian)##
    28. E. Mavedat and S. Maleki, “Urban Vulnerability Zoning with Passive Defense Approach and VIKOR Modeling, Case Study: Ahvaz Metropolitan Area,” Passive Defence Quarterly, vol. 10, no. 3, pp.       63-74, 2020. (In Persian)##
    29. A. H. Abdollahzadehand S. Shahriar, “Location of Risk Zones in Water Network Systems Quality Crisis With GIS, AHP Approach Case Study: Water Network Of Tehran,” Passive Defense Quarterly, vol. 9, no. 4, pp. 1-15, 2019. (In Persian)##
    30. H. G. Biurani, “Determination and Application of TOPSIS Multi-Criteria Decision Model for Urban Areas in Terms of Ranking Jam and Delinquency,” Detective, val. 2, no. 8, pp. 131, 2009.##
    31. J. Jiang, Y. W. Chen, Y. W. Chen, and K. W. Yang, “TOPSIS with Fuzzy Belief Structure for Group Belief Multiple Criteria Decision Making,” Expert. Syst. Appl., vol. 38, no. 8, pp. 9400-9406##, 2011.##