پیش‌بینی ناآرامی‌های مردمی با استفاده از شبکه‌های اجتماعی، مبتنی بر یادگیری ماشین در پردازش زبان طبیعی

نوع مقاله : ترویجی

نویسندگان

1 دانشجوی کارشناسی ارشد دانشگاه جامع امام حسین(ع)، تهران ، ایران

2 استادیار دانشگاه جامع امام حسین(ع)، تهران، ایران

چکیده

امروزه علاقه به پیش‌بینی و تشخیص رویدادها با استفاده از داده‌های موجود در شبکه‌های اجتماعی، افزایش یافته است. شبکه‌های اجتماعی را می‌توان به‌عنوان حسگرهای جامعه نام برد، چرا که کاربران آن همواره نظرات مثبت و منفی خود را نسبت به اتفاقات دنیای پیرامون خود بیان می‌کنند که نتیجه این تعاملات، محیطی است مملو از واکنش‌های بلادرنگ به حوادث دنیای واقعی. شبکه‌های اجتماعی یکی از بهترین ابزارها برای ارزیابی جامعه و پیش‌بینی حوادث آن است. اگر چه تشخیص و دسته‌بندی خودکار حوادث و رویدادها، به ویژه ناهنجاری‌های اجتماعی مانند اغتشاش یک کار پیش‌پاافتاده است اما برای دولت‌ها و سازمان‌های امنیتی که نیاز به پاسخگویی سریع و متناسب دارند، از ارزش بالایی برخوردار است؛ زیرا می‌توان هزینه‌ها و خسارات ناشی از این ناآرامی‌ها را کاهش داد. برای این چالش، ما یک چارچوب پیش‌بینی رویداد طراحی کردیم که به کمک آن می‌توان "رویدادهای اخلال‌گر" که امنیت و نظم اجتماعی را تهدید می‌کنند از رویدادهای روزمره شناسایی کرد. برای انجام این کار از روش‌های پردازش زبان طبیعی به‌منظور درک متون، حذف محدودیت‌های زبان انسان، تحلیل احساس و موضوع استفاده کردیم، و درنهایت با استفاده از روش‌های یادگیری ماشین مانند Naïve Bayes و Support Vector Machines به طبقه‌بندی حوادث و رویدادها پرداختیم. در پایان چارچوب خود را در یک مجموعه داده بزرگ و واقعی از توییتر ارزیابی کردیم تا کارایی و اثربخشی سامانه خود را برای پیش‌بینی رویدادهای آینده نشان دهیم. نتایج به‌دست آمده نشان داد که چارچوب پیشنهادی با دقت 79 درصد توانایی تشخیص توییت‌های نارضایتی را دارد. همچنین موفق به استخراج اطلاعات مفید از این توییت‌ها در غالب 5 موضوع شدیم که با دقت 40 درصد اطلاعاتی شامل مکان، زمان، اشخاص، اهداف و عوامل مرتبط با یک رویداد را استخراج کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Predicting Public Unrest Using Social Networks, Based on Machine Learning in the Natural Language Processing

نویسندگان [English]

  • Rasool Abbasi 1
  • Mohammad Ali Javadzade 2
1 Imam Hossein University: Tehran,/School of Computer and Cyber Power
2 Imam Hossein Comprehensive University
چکیده [English]

Today, the interest in predicting and detecting events using the data available on social networks has increased. Social networks can be called the sensors of society, because the users always express their positive and negative opinions about the events of the world around them, which results in an environment full of real-time reactions to real-world events. Social networks are one of the best tools for assessing the society and predicting upcoming events. Although the automatic detection and classification of events, especially social anomalies such as riots, is a trivial task, it is of great value to governments and security organizations that need to respond quickly and appropriately; because the costs and damages caused by these unrests can be reduced. For this challenge, we have developed an event predicting framework that can distinguish "disruptive events" that threaten social security and order from daily events. To do this, we have used natural language processing techniques to comprehend texts, remove the limitations of human language, and perform sentiment analysis and topic detection. We have classified the events using machine learning techniques such as the Naïve Bayes and Support Vector Machines. Finally, we have evaluated our framework in a large and real data set from Twitter to show the efficiency and effectiveness of our system in predicting future events. The results show that the proposed framework has the ability to detect tweets reflecting dissatisfaction with 79% accuracy. We have also managed to extract the useful information related to an event with 40% accuracy from these tweets in the form of 5 topics namely, the place, time, people, goals and event related factors.

کلیدواژه‌ها [English]

  • Event Prediction
  • Sentiment Analysis
  • Topic Analysis
  • Social Networks
  • Incident and Social Anomalies Prediction

Smiley face

  • Bahrami, Y. Findik, B. Bozkaya, and S. Balcisoy, “Twitter Reveals: Using Twitter Analytics to Predict Public Protests,” Mit Media Lab, Massachusetts Institute of Technology, Cambridge, Ma, Usa, 2017.
  • میرزایی، میثم، مروری بر روش‌های تشخیص ناهنجاری مبتنی برگراف در شبکه‌های اجتماعی، نشریه پدافند غیرعامل، دوره 10، شماره 3، شماره پیاپی 39،
    صفحه 13-1، پاییز 1398.
  • N. Alsaedi, P. Burnap, and O. Rana, “Can We Predict a Riot? Disruptive Event Detection Using Twitter,” Cardiff University, Uk, 2017.
  • Dwarakanath, A. Kamsin, R. A. Rasheed, A. Anandhan, and L. Shuib, “Automated Machine Learning Approaches for Emergency Response and Coordination via Social Media in the Aftermath of a Disaster: A Review,” Department of Computer System And Technology, Faculty Of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, 2021.
  • Bajpai and A. Jaiswal, “A Framework for Analyzing Collective Action Events on Twitter,” Pennsylvania State University, 2011.
  • S. Neogi, K. A. Garga, R. K. Mishraa, and Y.K. Dwivedi, “Sentiment Analysis and Classification of Indian Farmers’ Protest Using Twitter Data,” Department of Computer Science, BITS Pilani, Dubai Campus, Dubai, United Arab Emirates, 2021.
  • Behl, A. Rao, S Aggarwal, S Chadha, and H.S. Pannu, “Twitter for Disaster Relief through Sentiment Analysis for COVID-19 and Natural Hazard Crises,” Computer Science and Engineering Department Thapar Institute of Engineering and Technology Patiala India, India, 2021.
  • Jianqiang, G. Xiaolin, and A. Z. Xuejun, “Deep Convolution Neural Networks for Twitter Sentiment Analysis,” School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China, 2018.
  • Jianqiang and A. G. Xiaolin, “Comparison Research on Text Pre-processing Methods on Twitter Sentiment Analysis,” School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China, 2017.
  • A. Kharde and S.S. Sonawane, “Sentiment Analysis of Twitter Data: A Survey of Techniques,” Department of Computer Engg,  Pune Institute of Computer Technology,Pune University of Pune (India), 2016.
  • Abbasi, http://ideasaryan.blogfa.com/category/3, 2021.
  • Learn, https://monkeylearn.com/text-classification, 2019.
  • Pascual, https://monkeylearn.com/ blog/introduction-to-topic-modeling, 2019.
  • Dwivedi, “NLP: Extracting the Main Topics from your Dataset Using LDA in Minutes, 2018.
  • Hua, D. T. Huynh , S. Hosseini , J. Lu, and X. Zhou, “Information Extraction From Microblogs A Survey”:Int. J. Softw. Informatics 6 (4), 495-522  , 2012.
  • Rohan, “The Natural Language Processing Workshop,” Packt Publishing, 2020.
  • Jalaj, “Python Natural Language Processing,” Packt Publishing, 2017.
  • Masato, “Real-World Natural Language Processing,” Manning Shelter Island, 2021.