بازآرایی شبکه‌های توزیع برق جهت افزایش تاب آوری و قابلیت اطمینان با استفاده از توابع هدف فازی و نظریه بازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده فنی و مهندسی ، دانشگاه آیت ا... بروجردی (ره)، بروجرد، ایران

2 استادیار، دانشکده فنی و مهندسی ، دانشگاه آیت ا... بروجردی (ره)، بروجرد، ایران

چکیده

شبکه‌های توزیع در سیستم قدرت بالاترین تلفات انرژی را به خود اختصاص می‌دهند و سبب کاهش بازده سیستم و نیز کاهش تنظیم ولتاژ مناسب می‌گردند، بنابراین یک روش مناسب برای کاهش تلفات شبکه و نیز افزایش تاب آوری در زمان وقوع حادثه در شبکه‌های توزیع بازآرایی آن می‌باشد. به علاوه حضور انواع مختلف منابع تولید پراکنده در شبکه‌های توزیع سبب شده تا تجدید ساختاری با کمترین هزینه در شبکه‌های موجود مورد مطالعه قرار بگیرد. بنابراین در این مقاله یک روش بهینه‌سازی چند هدفه شامل کاهش تلفات شبکه توزیع، افزایش سطح نفوذ منابع تولید پراکنده و درنهایت کاهش میزان انرژی تأمین نشده با حفظ محدودیت‌های بهره‌برداری و فنی شبکه معرفی شده است. به علاوه با توجه به ماهیت مختلف توابع هدف از توابع فازی برای فازی سازی استفاده شده است و درنهایت ترکیب نظریه بازی‌ها و الگوریتم بهینه‌سازی حرکت پرندگان جهت پیدا کردن نقطه بهینه مسئله به عنوان نقطه نش ارائه شده است. نتایج بر روی دو شبکه 33 و 69 باس استاندارد IEEE پیاده‌سازی می‌گردد که نتایج حاکی از کاهش تلفات و افزایش سطح ولتاژ شبکه‌های مورد مطالعه و نیز کاهش میزان انرژی تأمین نشده در شبکه خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Reconfiguration of electricity distribution networks to increase resilience and reliability using fuzzy objective functions and game theory

نویسندگان [English]

  • mohamad abedini 1
  • Hamed Moazami 2
1 Associate Professor, Department of Electrical Engineering, Ayatollah boroujerdi university, Boroujerd, Iran
2 Abru university
چکیده [English]

Distribution networks, the final stage delivering electricity to consumers, are a major source of inefficiency in power systems. These networks suffer from high energy losses, decreasing overall system efficiency and voltage regulation problems. Restructuring these networks presents a promising solution. Not only can it reduce losses and improve resilience during outages, but it can also accommodate the growing presence of distributed generation sources.

This article proposes a novel, multi-objective optimization method for distribution network reconfiguration. It aims to achieve three key goals: minimizing energy losses, increasing the use of distributed generation, and reducing unsupplied energy. The method utilizes fuzzy logic and game theory to navigate the complexities of these sometimes conflicting objectives. Finally, a powerful algorithm called particle swarm optimization helps identify the optimal network reconfiguration, ensuring all objectives are met simultaneously.

The effectiveness of this method is demonstrated by applying it to standard IEEE 33 and 69 bus networks. The results are encouraging, showing reductions in energy losses, improved voltage stability, and minimized outages during disruptions. This paves the way for a more efficient, resilient, and sustainable power grid that integrates renewable energy sources seamlessly.

کلیدواژه‌ها [English]

  • fuzzy
  • resilience
  • game theory
  • reliability
  • rearrangement

Smiley face

[1] D. Duan, X. Ling, X. Wu, and B. Zhong “Reconfiguration of distribution network for loss reduction and reliability improvement based on an enhanced genetic algorithm”, IJEPES, vol. 64, no. 88, pp. 88-95, July. 2015, doi: 10.1016/j.ijepes.2014.07.036.
[2] H. Wu, P. Dong, and M. Liu, "Distribution Network Reconfiguration for Loss Reduction and Voltage Stability with Random Fuzzy Uncertainties of Renewable Energy Generation and Load," in IEEE Transactions on Industrial Informatics, vol. 16, no. 9, pp. 5655-5666, Sept. 2020, doi: 10.1109/TII.2018.2871551.
[3] H. Tang, J. Zhu, C. Chen, Z. Zhang and D. Zhang, "Distribution Network Reconfiguration Based on Back Propagation neural networks," 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), Changsha, China, 2019, pp. 2578-2582, doi: 10.1109/EI247390.2019.9062258.
[4] J. Singh and R. Tiwari, “Real power loss minimisation of smart grid with electric vehicles using distribution feeder reconfiguration,” IET Gener. Transm. Distrib, vol. 13, no. 18, pp. 4249–4261, Sept. 2019, doi:  10.1049/iet-gtd.2018.6330.
[5] V. Fathi, H. Seyedi and B. M. Ivatloo, “Reconfguration of distribution systems in the presence of distributed generation considering protective constraints and uncertainties”, Int. Trans. Electric. Energy Syst, vol. 30, no. 5, pp.12346, Feb. 2020, doi.org/10.1002/2050-7038.12346.
[6] M. Esmaeili, M. Sedighizadeh and M. Esmaili, “Multi-objective optimal reconfguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty”, Energy, vol.103, no.8, pp. 86–99, Mar. 2016, doi.org/10.1016/j.energy.2016.02.152.
 [7] M. R. Kaveh, R. A. Hooshmand and S. M. Madani, “Simultaneous optimization of re-phasing, reconfguration and DG placement in distribution networks using BF-SD algorithm”, Appl. Soft Comput, vol. 62, no.14, pp.1044–1055, Dec. 2018, https://doi.org/10.1016/j.asoc.2017.09.041.
[8] D. F. Teshome and K. L. Lian, "Comprehensive mixed-integer linear programming model for distribution system reconfiguration considering DGs”, IET Gener. Transmiss. Distrib., vol. 12, no. 20, pp. 4515-4523, Nov. 2018, doi:  10.1049/iet-gtd.2018.5242,
[9] M. Kashem, V. Ganapathy, G. Jasmon, “Network reconfguration for load balancing in distribution networks”, IEE Proc.-Gener. Transm. Distrib, vol.  146, no. 6, pp. 563–567, Nov.1999, doi:  10.1049/ip-gtd:19990694
[10] J.Z. Zhu, “Optimal reconfguration of electrical distribution network using the refned genetic algorithm”, Electr. Power Syst. Res. vol.62, no. 1, pp. 37–42, Apr. 2002, doi.org/10.1016/S0378-7796(02)00041-X.
[11] I. A. Quadri, S. Bhowmick and D. Joshi, "Multi-objective approach to maximise loadability of distribution networks by simultaneous reconfiguration and allocation of distributed energy resources", IET Gener. Transmiss. Distrib., vol. 12, no. 21, pp. 5700-5712, Oct. 2018, DOI:  10.1049/iet-gtd.2018.5618,
[12] B. Amanulla, S. Chakrabarti and S. N. Singh, "Reconfiguration of Power Distribution Systems Considering Reliability and Power Loss," in IEEE Transactions on Power Delivery, vol. 27, no. 2, pp. 918-926, Apr. 2012,
doi: 10.1109/TPWRD.2011.2179950.
[13] M.P. Lalitha, V.V. Reddy and V. Usha, “Optimal DG placement for minimum real power loss in radial distribution systems using PSO”, J. Theor. Appl. Inf. Technol, vol.13, no.8, pp.107–116, July. 2010, https://doi.org/10.1016/j.egypro.2013.06.759.
[14] E. Ali, SA. Elazim, A. Abdelaziz, “Ant lion optimization algorithm for optimal location and sizing of renewable distributed generations” Renew Energy, vol. 101, no.14, pp.1311–1324, Dec.2018, https://doi.org/10.1016/j.jesit.2017.06.001.
 [15] S. Ravindran, TAA. Victoire, “A bio-geography-based algorithm for optimal siting and sizing of distributed generators with an effective power factor model”, Comput Electr Eng, vol.72, no.9, pp. 482–501, Oct.2018,
doi.org/10.1016/j.compeleceng.2018.10.010.
[16] A. Abbasi, "Investigation of simultaneous effect of demand response and load uncertainty on distribution feeder reconfiguration", IET Gener. Transmiss. Distrib., vol. 14, no. 8, pp. 1438-1449, Apr. 2020, doi.org/10.1049/iet-gtd.2019.0854.
[17] R. Ghafarpour, S. Saadi, S. Zamaniyan and M. Mahmoudian, "Improving the resilience of electrical distribution systems through optimal performance and adaptability in the presence of mobile generation sources", Passive defense, vol. 14, no. 3, pp.105-114. 1402, doi: 20.1001.1.20086849.1402.14.3.9.3. (In Persian)
[18] Z. Bagheri, M. Abbasi, A.R. Kayani and M.J Kiani, “Finding the optimal location and size of scattered production sources and capacitors in electric energy distribution networks with microgrid division with passive defense approach”, Non-active Defense, vol.14, no.2, pp. 1-14,2023.
     doi:20.1001.1.20086849.1402.14.2.1.3. (In Persian)
[19] S. Khoshbakht, E. Namdari, M. Doostizadeh, “Reconfiguring Distribution Networks by Means of Minimizing Power Loss and Considering Overcurrent Protection”, IECO, vol. 4, no. 3, pp.321-331, Dec 2022, doi: 10.22111/ieco.2021.36302.1316. (In Persian)
[20] H. Bagheri Toulabi and A. Lashkarara, “Simultaneous rearrangement with optimal allocation of D-STATCOM units and distributed generation in distribution networks in order to reduce losses, improve reliability, voltage stability and operating costs by combining horse herd optimization algorithm and genetics”, ISEE, vol.5, no.7, 1-9, 2023, doi: 10.22108/isee.2023.136749.1614. (In Persian).
[17] F. Sayadi, S. Esmaeili, and F. Keynia, “Feeder reconfiguration and capacitor allocation in the presence of non-linear loads using new P-PSO algorithm,” IET Generation, Transmission & Distribution, vol. 10, pp. 2316-2326, 2016, DOI:  10.1049/iet-gtd.2015.0936.
[18] F.  V. Gomes, S. Carneiro, J. L. R. Pereira, M. P. Vinagre, P. A. N. Garcia and L. R. Araujo, "A new heuristic reconfiguration algorithm for large distribution systems," in IEEE Transactions on Power Systems, vol. 20, no. 3, pp. 1373-1378, Aug. 2005, doi: 10.1109/TPWRS.2005.851937.
[19] M. E. Baran and F. F. Wu, "Network Reconfiguration in Distribution Systems for Loss Reduction and Load Balancing," in IEEE Power Engineering Review, vol. 9, no. 4, pp. 101-102, April 1989, doi: 10.1109/MPER.1989.4310642.
[20] J. E. Mendoza, M.E. Lopez, C.A. Coello and E.A. Lopez, “Microgenetic Multiobjective Reconfiguration Algorithm Considering Power Losses and Reliability Indices for Medium Voltage Distribution Network”, IET Gener. Transm. Distrib, vol. 3, no. 9, pp. 825-84, Sept. 2019, DOI:  10.1049/iet-gtd.2009.0009.
[21] M. H. Hematpour, M. H. Rezaian Kochi, “Multi-objective rearrangement in line with the reliability and energy consumption of distribution systems in the presence of wind turbines using the MOHSA algorithm”, ISEE, vol.12, no. 4, pp. 13-30,2021, doi: 10.22108/isee.2021.123505.1390
[22] V. B. Pamshetti, S. Singh and S. P. Singh, "Combined Impact of Network Reconfiguration and Volt-VAR Control Devices on Energy Savings in the Presence of Distributed Generation," in IEEE Systems Journal, vol. 14, no. 1, pp. 995-1006, March 2020, doi: 10.1109/JSYST.2019.2928139.
[23] L. Chen, C. Xu and H. Song, “Optimal sizing and sitting of EVCS in the distribution system using metaheuristics”, a case study. Energy Rep, vol.12, no. 6, pp.208–217, Dec.2021.
     doi.org/10.1016/j.egyr.2020.12.032.
[24] M. Najjarpour and B. Tousi, “Loss Reduction of Distribution Network by Optimal Reconfiguration and Capacitor Placement Using Cuckoo and Cultural Algorithms,” ICTEM, Mazandaran, Babol, Iran, Islamic Republic of, pp. 1-5, 2023.
[25] S. Ahmadi, S. Abdi, and M. Kakavand, ‘‘Maximum power point tracking of a proton exchange membrane fuel cell system using PSO-PID controller,’’ Int. J. Hydrogen Energy, vol. 42, no.5, pp. 20430–20443, Dec. 2017, doi.org/10.1016/j.ijhydene.2017.06.208.
[26] M. Zarei and A. Zangeneh, “Multi-objective optimization model for distribution network reconfiguration in the presence of distributed generations”, Int Trans Electr Energy Syst, vol. 27, no. 12, pp.1–18, Oct.2017, doi.org/10.1002/etep.2425
 [27] R. Billinton and Peng Wang, "A generalized method for distribution system reliability evaluation," IEEE WESCANEX 95. Communications, Power, and Computing. Conference Proceedings, Winnipeg, MB, Canada, 1995, pp. 349-354 vol.2, doi: 10.1109/WESCAN.1995.494054.
[28] M. Gitizadeh, A.A. Vahed and J. Aghaei, Multistage “distribution system expansion planning considering distributed generation using hybrid evolutionary algorithms”, Appl. Energy, vol. 101, no.9, pp. 655–666, Aug. 2013,
    doi.org/10.1016/j.apenergy.2012.07.010.
[27] A. G. Al-Gizi, A. Craciunescu, and S. Al-Chlaihawi, “The use of ANN to supervise the PV MPPT based on FLC”, ATEE, Bucharest, Romania, pp. 703–708, 2017, doi.org/10.1109/ATEE.2017.7905128.
[30] S. M. R. Rafiei, M. H. Kordi, G. Griva and A. Tenconi, "Nash Genetic Algorithm based optimal design of hysteresis inverters for active power filtering applications," 2009 IEEE Bucharest PowerTech, Bucharest, Romania, 2009, pp. 1-6, doi: 10.1109/PTC.2009.5282068.
[31] M. R. Bonyadi and Z. Michalewicz, "Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review," in Evolutionary Computation, vol. 25, no. 1, pp. 1-54, March 2017, doi: 10.1162/EVCO_r_00180.
[32] A. S. Bouhouras, K. I. Sgouras, P. A. Gkaidatzis, and D. P. Labridis, "Optimal active and reactive nodal power requirements towards loss minimization under reverse power flow constraint defining DG type," Ijepes, vol. 78, no.8, pp. 445-454, Dec.2016. doi.org/10.1016/j.ijepes.2015.12.014.
[33] Z. ravej and A. Akhlaghi, “A novel approach based on cuckoo search for DG allocation in distribution network”, Ijepes, vol. 44, no.1, pp.672–679, Jan. 2013.doi.org/10.1016/j.ijepes.2012.08.009.
[34] Khatod, J.S.D.K., Pant, V.: Evolutionary programming based optimal placement of renewable distributed generators. IEEE Trans. Power Syst. 28(2), 683–695, 2013.
[35] B. Pornazaryan, P. Karimyan, G. B. Gharehpetian, M. and Abedi, “Optimal allocation and sizing of DG units considering voltage stability, losses and load variations”, Ijepes, vol.79, no.21, pp.42–52, July. 2016, doi.org/10.1016/j.ijepes.2015.12.034.
[36] A. Mohamed-Imran, M. Kowsalya, D.P. Kothari, “A novel integration technique for optimal network reconfiguration and distributed generation placement in power distribution networks”, Ijepes, vol. 63, no.24, pp. 461–472, Dec. 2014, doi.org/10.1016/j.ijepes.2014.06.011.
[37] A. Noori, Y. Zhang, N. Nouri, and M. Hajivand, "Multi-Objective Optimal Placement and Sizing of Distribution Static Compensator in Radial Distribution Networks with Variable Residential, Commercial and Industrial Demands Considering Reliability," in IEEE Access, vol. 9, pp. 46911-46926, 2021, doi: 10.1109/ACCESS.2021.3065883.
[38] T. T. Tran, K. H. Truong, D. N. Vo, “Stochastic fractal search algorithm for reconfiguration of distribution networks with distributed generations”, Ain Shams Eng, vol.11, no.4, pp. 389–407, June. 2020, doi.org/10.1016/j.asej.2019.08.015
[39] J. Zhan, W. Liu, C. Y. Chung and J. Yang, "Switch Opening and Exchange Method for Stochastic Distribution Network Reconfiguration," in IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 2995-3007, July 2020, doi: 10.1109/TSG.2020.2974922.
[40] V. Vai, S. Suk and R. Lorm, “Optimal Reconfiguration in Distribution Systems with Distributed Generations Based on Modified Sequential Switch Opening and Exchange”, Appl. Sci, vol.11, no.5, pp.17-23, Dec. 2021, doi.org/10.3390/app11052146.