معرفی و ارزیابی یک روش برای آشکارسازی رویداد لرزشی با استفاده از حسگر فیبر نوری مبتنی بر بازتاب‌سنجی نوری حوزه فرکانس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مخابرات سیستم، دانشگاه گیلان، رشت، ایران

2 دانشیار، دانشگاه گیلان، رشت، ایران

چکیده .

در سال­های اخیر، روش­های مبتنی بر حسگر فیبر نوری توزیع‌شده (DFOS) با توجه به مزایایی همچون ایمنی در برابر تداخل امواج الکترومغناطیسی و ایجاد امکان سنجش توزیعی، مورد توجه قرار گرفته­اند. از جمله این روش­ها می­توان به حسگرهای مبتنی بر اثر پراکندگی رایلی اشاره کرد. از DFOS مبتنی بر اثر پس­پراکندگی رایلی می­توان برای حسگری لرزش که روشی امیدوارکننده برای کاربردهای مختلف، از جمله حفاظت پیرامونی و نظارت بر خطوط لوله است؛ استفاده کرد. حسگر مبتنی بر اثر پس­پراکندگی رایلی در دو دسته بازتاب­سنجی نوری حوزه زمان (OTDR) و بازتاب­سنجی نوری حوزه فرکانس (OFDR) طبقه­بندی می­شود. روش OFDR، علیرغم پیچیدگی بالاتر، با توجه به مزایایی که در بهبود وضوح مکانی در کنار SNR مناسب دارد، به ­عنوان یک جایگزین برای OTDR معمولی مطرح است. در این مقاله، یک روش­ حسگری لرزش مبتنی ­بر OFDR یعنی روش میانگین قدرمطلق تفاضل دو سیگنال به روش بازتاب­سنجی حوزه فرکانس با محدوده­ وضوح 2/1 متری معرفی و ارزیابی شده و با استفاده از نرم­افزار MATLAB شبیه­سازی و بررسی می­شود. با توجه به نتایج حاصل از بررسی، روش ارائه‌شده به‌عنوان روشی مبتنی بر OFDR برای آشکارسازی رویداد لرزشی مناسب ارزیابی‌شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation and Evaluation of a Method for Vibration Event Detection Using an Optical Fiber Sensor Based on Optical Frequency Domain Reflectometry

نویسندگان [English]

  • Mohammad-Sadegh Kheiridoust 1
  • Gholamreza Baghersalimi 2
  • Reza PR Hasanzadeh 2
1 University of Guilan
2 University of Guilan
چکیده . [English]

In recent years, Distributed Fiber Optic Sensors (DFOS) have received attention due to advantages such as immunity to electromagnetic interference and distributed sensing capability. Among these methods, we can mention the sensors based on the Rayleigh scattering effect. DFOS based on the Rayleigh backscattering effect can be used for vibration sensing, which is a promising method for various applications such as perimeter security and monitoring of pipelines. The sensors based on the Rayleigh backscattering effect is classified into two categories: Optical Time Domain              Reflectometry (OTDR) and Optical Frequency Domain Reflectometry (OFDR). The OFDR method, despite its higher complexity, is proposed as an alternative technique to the conventional OTDR in order to improve the spatial resolution without sacrificing the SNR. In this article, a vibration      sensing method based on OFDR, i.e., the average of the absolute magnitude of the difference between two signals obtained through optical frequency domain reflectometry with a resolution of 1.2 meters is investigated and evaluated. This method is investigated, evaluated and simulated using MATLAB software tool. According to the results, the proposed OFDR-based method, has been evaluated as a suitable method for detecting vibration events.
 

کلیدواژه‌ها [English]

  • Vibration Detection
  • Optical Frequency Domain Reflectometry (OFDR)
  • Distributed Optical Fiber Sensor
  • Perimeter Security
  • Optical Fiber

Smiley face

[1] M. Nikles, “Long-distance fiber optic sensing solutions for pipeline leakage, intrusion, and ground movement detection,” Proc. SPIE, vol. 7316, pp. 731602–731613, 2009. DOI: 10.1117/12.818021.
[2] Q. Wang, L. Han, X. Fan et al, “Distributed fiber optic vibration sensor based on polarization fading model for gas pipeline leakage testing experiment,” J. Low Freq. Noise, Vib. Act. Control, vol. 37, no. 3, pp. 468–476, 2017. DOI: 10.1177/1461348417725949.
[3] S. C. Huang, W. Lin, M. Tsai et al, ‘‘Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks,’’ Sens. Actuators A, Phys., vol. 135, no. 2, pp. 570–579, 2007.
[4] Z. Ding, X. S. Yao, T. Liu et al, “Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals,” Opt. Express, vol. 20, no. 27, pp.      28319- 28329, 2012.
[5] A. Malakzadeh, R. Pashaei and M. MansourSamaei, “Phase-Sensitive Distributed Fiber Optic Sensor in Passive Defense Measures,” Passive Defense Quarterly, vol. 9, no. 4, pp. 93-103, 2019. (In Persian).
[6] A. Malakzadeh, M. Mansoursamaei, R. Pashaei et al, “Fiber Bragg grating sensor as the most effective distributed optical fiber sensor in defense applications of civil structures,” Passive Defense Quarterly, vol. 10, no. 3, pp. 15-24, 2019. (In Persian).
[7] P. Hosseinnia and A. Madanchi, “Investigation and Evaluation of Peripheral Intrusion Detection Systems Based on Fiber Optic Sensors & Their Application in Border Areas,” Passive Defense Quarterly, vol. 13, no. 4, pp. 55-66, 2023. (In Persian).
[8] D. Anderson, “Optical fiber sensors for perimeter and IT protection,” Application Notes FSI TP 02, Fiber SenSys, 2012.
[9] A. Bianchini, A. Guzzini, M. Pellegrini et al, “Natural gas distribution system: Overview of leak detection Systems,” Proc. XXI Summer School ‘Francesco Turco’—Industrial Systems Eng., Naples, Italy, PP. 13-15, 2016.
[10] X. Liu, B. Jin, Q. Bai et al, “Distributed fiber-optic sensors for vibration detection,” Sens., vol. 16, no. 8, p. 1164, 2016. DOI:10.3390/s16081164.
 
 
 
 
 
 
 
 
 
[11] T.S.Y. Francis and Y. Shizhuo, Fiber Optic Sensors, Marcel Dekker, Inc. 2002.
[12] J. P. Von der Weid, R. Passy, G. Mussi et al, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightw. Tech., vol. 15, no. 7, pp. 1131–1141, 1997.
[13] Y. Du, T. Liu, Z. Ding et al, “Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR,” IEEE Photonics Journal, vol. 6, no. 5, pp. 1-11, 2014. DOI: 10.1109/JPHOT.2014.2352622.
[14] T. Liu, Y. Due, Z. Ding et al, “40-km OFDR-based distributed disturbance optical fiber sensor,” IEEE Photonics Technol. Lett., vol. 28, no. 7, pp. 771-774, 2016.
[15] Z. Ding, D. Yang, K. Liu et al, “Long-range OFDR-based distributed vibration optical fiber sensor by multicharacteristics of Rayleigh scattering,” IEEE Photonics Journal, vol. 9, no. 5, pp.   1-10, 2017. DOI:10.1109/JPHOT.2017.2752281.
[16] Q. Liu, X. Fan and Z. He, “Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range,” Opt. Express, vol. 23, no. 20, pp.        25988-25995, 2015. DOI:10.1364/OE.23.025988.
[17] D. Chen, Q. Liu and Z. He, “Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR,” Opt. Express, vol. 25, no. 7, pp. 8315-8325, 2017. https://doi.org/10.1364/OE.25.008315.
[18] K. Kishida, K. Nishiguchi, C. Li, et al, “Development of real-time Time Gated Digital (TGD) OFDR method and its performance verification,” Sens., vol. 21, no. 14, p. 4865, 2021. https://doi.org/10.3390/s21144865.
[19] S. Wang, X. Fan, Q. Liu et al, “Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR,” Opt. Express, vol. 23, no. 26, pp. 33301-33309, 2015. DOI:10.1364/OE.23.033301.
[20] I. Steinberg, L. Shiloh, H. Gabai et al, “Over 100km long ultra-sensitive dynamic sensing via Gated-OFDR, ˮ In24th International Conference on Optical Fibre Sensors (SPIE), vol. 9634, pp. 121-124, 2015.
[21] Z. Zhang, X. Fan and Z. He, “Long-range and wide-band vibration sensing by using phase-sensitive OFDR to interrogate a weak reflector array,” Opt. Express, vol. 28, no. 12, pp. 18387-18396, 2020. https://doi.org/10.1364/OE.390592.
[22] D. Arbel and A. Eyal, “Dynamic optical frequency domain reflectometry,” Opt. express, vol. 22, no. 8, pp. 8823-8830, 2014. DOI:10.1364/OE.22.008823.
[23] Z. Ding, C. Wang, K. Liu et al, “Distributed optical fiber sensors based on optical frequency domain reflectometry: A review,” Sens., vol. 18, no. 4, p. 1072, 2018.
[24] M. Wegmuller, J. P. Von der Weid, P. Oberson et al, “High resolution fiber distributed measurements with coherent OFDR,” in Proc. ECOC’00, vol. 11, no. 4, p. 109, 2000.
[25] N. R. Poddubrovskii, I. A. Lobach and S. I. Kablukov, “Signal Processing in Optical Frequency Domain Reflectometry Systems Based on Self-Sweeping Fiber Laser with Continuous-Wave Intensity Dynamics ,” Algorithms, vol 16, no. 5, p. 260, 2023. https://doi.org/10.3390/a16050260.
[26] Z. Ding, X. S. Yao, T. Liu et al, “Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter,” Opt. express, vol. 21, no. 3, pp. 3826-3834, 2013.
[27] U. Glombitza and E. Brinkmeyer, “Coherent Frequency-Domain reflectometry for characterization of Single-Mode integrated-optical Waveguides,” J. Lightw. Tech., vol. 11, no. 8, pp. 1377-1384, 1993.
[28] A. V. Faustov, A. Gusarov, L. B. Liokumovich et al, “Comparison of simulated and experimental results for distributed radiation-induced absorption measurement using OFDR reflectometry,” Proc. of SPIE vol. 8794, pp. 583-588, 2013. · DOI: 10.1117/12.2026786.
  • تاریخ دریافت: 03 تیر 1403
  • تاریخ بازنگری: 25 مهر 1403
  • تاریخ پذیرش: 05 اسفند 1403
  • تاریخ انتشار: 30 فروردین 1404