تدوین مدل ترکیبی تاب‌آوری در شبکه آب‌رسانی شهری مطالعه موردی: شهر بابل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مدیریت بحران، مجتمع دانشگاهی مهندسی و پدافند غیرعامل، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 دانشیار، مجتمع دانشگاهی مهندسی و پدافند غیرعامل، دانشگاه صنعتی مالک اشتر، تهران، ایران

3 استادیار، مجتمع دانشگاهی مهندسی و پدافند غیرعامل، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده .

با توجه به اینکه شبکه‌های آب‌رسانی به‌عنوان تأمین‌کننده مهم‌ترین نیازهای زیستی انسان و صنایع و مراکز، یکی از شریان‌های حیاتی کشور محسوب شده و اختلال هرچند کوتاه‌مدت در عملکرد آن، به دلیل داشتن جایگاهی حیاتی در منافع ملّی منجر به آسیب جدی در اقتصاد، امنیت جامعه می‌شود؛ پس ارزیابی و ارتقاء سطح تاب‌آوری این شبکه‌ها به‌منظور اطمینان از دسترسی پایدار به آب در بحران‌های مختلف و شرایط گوناگون اضطراری و همچنین کمک به اخذ راهبرهای بهینه برای شرکت‌های آبفا جهت افزایش سطح تاب‌آوری شبکه خود، حیاتی است. در همین راستا هدف پژوهش حاضر، تدوین مدل ترکیبی تاب‌آوری شبکه توزیع آب، برگرفته‌شده از دو مدل ERASMUS+IRAM است. به اینصورت که برای بررسی تاب‌آوری یک پهنه گلوگاهی از شبکه توزیع آب شهر بابل، ابتدا دارایی‌ها را به دو دسته مخزن و خطوط لوله تقسیم کرده و سپس به کمک پرسشنامه و مصاحبه با خبرگان پدافند غیرعامل و متخصصان آبفای مازندران به ازای هر اختلال محتمل انتخاب‌شده، سناریوهای احتمالی متناسب با آن تعیین شد. پس از تعیین مؤلفه‌ها و شاخص‌های ارزیابی، به تحلیل داده و ارزیابی وضع موجود تاب‌آوری (RDR) پهنه موردنظر پرداخته شد. نتایج بدست آمده نشان می‌دهد وضعیت فعلی پهنه، تاب‌آوری لازم را نداشته و بر اساس سناریوها، حجم عظیمی از آب انتقالی این پهنه بصورت آب بدون درامد است. همچنین به دلیل قدمت زیاد دارایی‌ها، پهنه گلوگاهی در برابر تهدیدات احتمالی فرسودگی و اختلاف فشار بسیار آسیب‌پذیر است. از همین رو به کمک بازدید میدانی، راهکارهایی جهت ارتقاء ظرفیت و زیر ظرفیت‌ها که افزایش سطح کلی تاب‌آوری شبکه را به دنبال خواهد داشت، پیشنهاد گردید. درنهایت بر اساس بازارزیابی پهنه پس از اعمال راهکارها، افزایش تاب‌آوری قابل‌مشاهده می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Developing a Hybrid Resilience Model for Urban Water supply Networks Case Study: Babol City

نویسندگان [English]

  • zahra Mohammadpour 1
  • M . A. Nekoei 2
  • Hadi Zakeri Khatir 3
1 MSc. of Crisis Management, Dept. of Passive Defense, Malek Ashtar University of Technology, Tehran, Iran
2 Malekashtar University
3 Assist. Prof., Dept. of Passive Defense, Malek Ashtar University of Technology, Tehran, Iran.
چکیده . [English]

Water supply networks are considered one of the most vital infrastructures of a country, as they fulfill the fundamental biological needs of humans, industries, and urban centers. Even a short-term disruption in their performance can lead to severe economic and social consequences due to their critical role in national interests. Therefore, it is essential to assess and enhance the resilience of these networks in order to ensure a sustainable water supply during various crises and emergency situations, and to assist water and wastewater companies in adopting optimal strategies to improve network resilience. In line with this objective, the present study aims to develop a hybrid resilience model for water distribution networks by integrating the ERASMUS and IRAM frameworks. To evaluate the resilience of a critical choke point in the water distribution network of Babol City, assets were categorized into two main groups: reservoirs and pipelines. Through questionnaires and interviews with civil defense experts and specialists from the Mazandaran Water and Wastewater Company, potential disruption scenarios were identified for each selected asset. After defining the evaluation components and indicators, data analysis was conducted to assess the current resilience status (RDR) of the selected zone. The results indicated that the existing resilience level is insufficient. Based on the applied scenarios, a significant portion of the water being transported in this zone is classified as non-revenue water. Additionally, due to the aging infrastructure, the critical choke point is highly vulnerable to threats such as deterioration and pressure fluctuations. Based on field observations, several solutions were proposed to enhance both the capacity and sub-capacities of the system, thereby increasing the overall resilience of the network. Following the implementation of these measures, a re-assessment revealed a notable improvement in the resilience level of the zone.

کلیدواژه‌ها [English]

  • Resilience assessment
  • passive defense
  • water distribution network
  • IRAM
  • ERASMUS

Smiley face

[1] M. A. Nakoei, L. Sayadi-Shalmani, M. H. Tofighi, A. Memarzadeh, A.Ali-Abbaszadeh, "Comprehensive Principles of Protecting Critical Infrastructures in the Water and Wastewater Industry". Malek Ashtar University of Technology,2023. (In Persian)
[2] "Strategic Plan for Protecting the Country's Infrastructure". No. 16011/1/2305, 1402/09/25. (In Persian) https://media.dotic.ir/uploads/org/2023/10/30/169866050544329600.pdf
[3] M. Sheikhali, GH. Asadolleh Fardi, S. Imamzadeh, "Vulnerability Assessment of Water Supply Facilities Using the Integrated AHP and RAMCAP Method", Amirkabir Civil Engineering Journal, vol. 52, no. 5, pp. 1205–1220,2020. (In Persian)
[4] R. Afsari,  M.Hassan Ali Zadeh, "Analysis of Resilience Indicators in Urban Blocks with Passive Defense Approach (Case Study: Tehran Metropolis) ". Passive defense Journal, vol. 15, no. 4, pp. 57–75. (In Persian)
[5] Z .Mohammadpour, "Localization of a Hybrid Operational Model of Resilience Based on a Quantitative-Qualitative Approach Based on Developed IRAM Models in Water Distribution Networks", Master's Thesis in Passive Defense-Crisis Management, Faculty of Engineering and Passive Defense, Malek Ashtar University of Technology, Tehran, Iran. (2024). (In Persian)
[6] P. Suchorab and D. Kowalski, "Water Resources Protection by Controlling Water Supply Network Leakages", International Journal of Conservation Science, vol. 12, pp. 745–754, 2021.
[7] A. Nariman, M. H. Fattahi, N. Talebbeydokhti, and M. S. Sadeghian, "Assessment of Hydraulic Resilience and Return Time of Sadra City Water Distribution Network under Earthquake", Iran-Water Resources Research, vol. 17, no. 2, pp. 204–221, 2021. (In Persian)
[8] S. Q. Shuang Qing, L. H. Liu HuiJie, and E. Porse, "Review of the quantitative resilience methods in water distribution networks, 2019.
[9] M. Maiolo, D. Pantusa, M. Carini, G. Capano, F. Chiaravalloti, and A. Procopio, "A new vulnerability measure for water distribution network", Water, vol. 10, no. 8, p. 1005, 2018.
[10]  A. Assad, O. Moselhi, and T. Zayed, "A new metric for assessing resilience of water distribution networks", Water, vol. 11, no. 8, p. 1701, 2019. DOI:10.3390/w11081701
[11] A. H. Abdollahzadeh, S. Shahriar  "Location of Risk Zones in Water Network Systems Quality Crisis With GIS, AHP Approach Case Study: Water Network Of Tehran". 2019. (In Persian)
[12] S.Givehchi, A.Vojdani Nozar, B.  Malek Mohammadi, "Evaluation of Easibility of Threats to Urban Water and Sewage Assets in the Face of Intentional Man-Made Disasters (Case Study: Hamedan City) ".2024. (In Persian)
[13]  A .Abdar, "Complying with passive defense requirements in water facilities to increase resilience", presented at the Fourth National Conference on Applied Research in Civil Engineering, Architecture and Urban Management, Fourth National Conference on Applied Research in Civil Engineering, Architecture and Urban Management, Apr. 2017. (In Persian)
[14]  Technical and Specialized System for the Protection of the Country's Infrastructures Approved on 28/06/1402 by the Standing Committee (Supreme Council) of the Country's Passive Defense.(In Persian)
https://rc.majlis.ir/fa/law/show/1792212.
[15]  P. Gasser, P. Lustenberger, M. Cinelli, W. Kim, M. Spada, P. Burgherr, et al., "A review on resilience assessment of energy systems", Sustainable and Resilient Infrastructure, vol. 6, no. 5, pp. 273–299, Sep. 2021.
[16] A. Mentges, L. Halekotte, M. Schneider, T. Demmer, and D. Lichte, "A resilience glossary shaped by context:  Reviewing resilience-related terms for critical infrastructures", International journal of disaster risk reduction,p.103893,2023.
[17]  A. Nariman, M. H. Fattahi, N. Talebbeydokhti, and M. S. Sadeghian, "Assessment of Seismic Resilience in Urban Water Distribution Network Considering Hydraulic Indices", Iran J Sci Technol Trans Civ Eng, vol. 47, no. 2, pp. 1165–1179, Apr. 2023. (In Persian)
[18]  S. M. Alavi, M. Masoud, A. Karimi, "Evaluation of the resilience of urban water network infrastructures against earthquakes (Case Study: Region 2 of Tehran Municipality)", 2019. (In Persian)
[19]  W. Liu, Z. Song, and M. Ouyang, "Lifecycle operational resilience assessment of urban water distribution networks", Reliability Engineering & System Safety, vol. 198, p. 106859, 2020.
[20]  G. P. Cimellaro, A. Tinebra, C. Renschler, and M. Fragiadakis, "New Resilience Index for Urban Water Distribution Networks", J. Struct. Eng., vol. 142, no. 8, p. C4015014, Aug. 2016.
[21] O. Piller, F. Sedehizade, T. Bernard, M. Braun, N. Cheifetz, et al., "Augmented resilience of water distribution systems following severe abnormal events", in CCWI 2017-Computing and Control for the Water Industry, 2017, pp. 8-p.
[22]             K. Diao, C. Sweetapple, R. Farmani, G. Fu, S. Ward, and D. Butler, "Global resilience analysis of water distribution systems", Water research, vol. 106, pp. 383–393, 2016. https://doi.org/10.1016/j.watres.2016.10.011
[23]             L. F. Gay and S. K. Sinha, "Stochastic simulation methodology for resilience assessment of water distribution networks", IJCIS, vol. 10, no. 2, p. 134, 2014.
[24]  NCC, National Cartographic Center, “Babol City map and spatial information atlas. Iran,” https://en.ncc.gov.ir/, 2021. (In Persian)
[25]  L. F. Gay Alanis, "Development of a resilience assessment methodology for networked infrastructure systems using stochastic simulation, with application to water distribution systems", PhD Thesis, Virginia Tech, 2013.
[26] M. Zolfaqari, A. Ghanbari Nasab, M. A. Nekooie, and S. M. Hosseini, "Evaluation of resilience of West Tehran wastewater transmission line to Firooz Bahram treatment plant", Emergency Management, vol. 12, no. 1, pp.1–15,2023.(In Persian)
[27] B. Betty, "The book Security and Resilience of Vital Infrastructure". Malek Ashtar University of Technology Publications, 2019. (In Persian)
  • تاریخ دریافت: 21 بهمن 1403
  • تاریخ بازنگری: 05 اسفند 1403
  • تاریخ پذیرش: 20 اردیبهشت 1404
  • تاریخ انتشار: 30 تیر 1404