تخمین پاسخ ستون های بتن مسلح تحت بارگذاری انفجار

نویسندگان

دانشگاه کردستان

چکیده

افزایش روزافزون خطر بروز انفجار در نواحی شهری موجب شده است که  صاحبان ساختمان­ها، دولت­ها و هم­چنین پژوهشگران به دنبال درک بهتر پاسخ سامانه های ساختمانیموجود تحت بارگذاری انفجار باشند. در ساختمان­های بتن مسلح تحت انفجار خارج از ساختمان، ستون­های خارجی آسیب­ پذیرترین و بحرانی­ترین اعضای سازه­ای محسوب می­گردد. در اغلب مطالعات انجام گرفته در زمینه­ بررسی اثر انفجار بر اعضای سازه­ای به­ویژه ستون­های بتن مسلح، از پکیج­های نرم­افزار اجزای محدود تخصصی (هیدروکدها) استفاده شده است. کاربرد هیدروکدها احتیاج به دانش و تخصص بالا داشته و نتایج حاصل از آن­ها بسیار وابسته به کاربر است. در این­جا، به مطالعه­ اثرات انفجار نزدیک بر ستون­های بتن مسلح معمولی که در برابر بارهای ثقلی طراحی شده­اند، پرداخته شده است. به این منظور از قابلیت­های نرم‌افزار اجزای محدود OpenSees در تحلیل دینامیکی غیرخطی سازه­ها بهره گرفته شده است. یک روش ساده برای واردکردن اثرات نرخ کرنش در تحلیل تحت بارگذاری انفجار پیشنهاد شده است. نتایج حاصل از مدل­سازی با این نرم­افزار، با استفاده از نتایج ثبت­شده در آزمایش­های انفجار با مقیاس واقعی، اعتبارسنجی شده است. مطابق با مهم­ترین نتایج حاصل، مدل­سازی اجزای محدود ضمنی با استفاده از OpenSees مقدار تغییرشکل جانبی ستون بتن مسلح را با دقت قابل قبولی محاسبه می­کند. طبق نتایج تحلیل­های انجام گرفته، میزان ضربه­ حاصل از انفجار بر ستون به اندازه­ فشار وارد بر وجه ستون، اهمیت دارد؛ هم­چنین، باید بارمحوری موجود در ستون را در مدل­سازی و تحلیل آن تحت انفجار جانبی در نظرگرفته شود.  

کلیدواژه‌ها


عنوان مقاله [English]

Estimating the response of reinforced concrete columns under blast loading

  1. X. Bao and B. Li, “Residual Strength of Blast Damaged Reinforced Concrete Columns,” International Journal of Impact Engineering, vol. 37, pp. 295-308, 2010.
  2. W. G. Corley, P. F. Mlakar, M. A. Sozen, and C. H. Thornton, “The Oklahoma City Bombing: Summary and Recommendations for Multihazard Mitigation,” Journal of Performance of Constructed Facilities, vol. 12, pp. 100–112, 1998.
  3. J. Li and H. Hao, “Numerical Study of Structural Progressive Collapse Using Substructure Technique,” Engineering Structures, vol. 52, pp. 101–113, 2013.
  4. K. Choi , M. S. Kim, E. Jo, H. Kim, D. J. Kim, and Y. H. Lee, “Residual Performance of Reinforced Concrete Columns under Blast Loading,” Proceedings of the 13th East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-13), 2013.
  5. M. Carriere, P. J. Heffernan, R. G. Wight, and A. Braimah, “Behavior of Steel Reinforced Polymer (SRP) Strengthened RC Members under Blast Load,” Canadian Journal of Civil Engineering, vol. 36, pp. 1356-1365, 2009.
  6. J. E. Crawford, “State of the Art for Enhancing the Blast Resistance of Reinforced Concrete Columns with Fiber-Reinforced Plastic,” Canadian Journal of Civil Engineering, vol. 40, pp. 1023–1033, 2013.
  7. S. Astarlioglu and T. Krauthammer, “Response of Normal-Strength and Ultra-High-Performance Fiber-Reinforced Concrete Columns to Idealized Blast Loads,” Engineering Structures, vol. 61, pp. 1-12, 2014.
  8. S. Astarlioglu, T. Krauthammer, D. Morency, and T. P. Tran, “Behavior of Reinforced Concrete Columns under Combined Effects of Axial and Blast-Induced Transverse Loads,” Engineering Structures, vol. 55, pp. 26-34, 2013.
  9. M. Arlery, A. Rouquand, and S. Chhim, “Numerical Dynamic Simulations for the Prediction of Damage and Loss of Capacity of RC Column Subjected to Contact Detonations,” in 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS-8), Toledo (Spain), 2013.
  10. Y. Shi, H. Hao, and Z. X. Li, “Numerical Derivation of Pressure-Impulse Diagrams for Prediction of RC Column Damage to Blast Load,” International Journal of Impact Engineering, vol. 35, pp. 1213-1227, 2008.
  11. K. C. Wu, B. Li, and K. C. Tsai, “Residual Axial Compression Capacity of Localized Blast-Damaged RC Columns,” International Journal of Impact Engineering, vol. 38, pp. 29-40, 2011.
  12. J. T. Baylot and T. L. Bevins, “Effect of responding and failing structural components on the air blast pressures and loads on and inside of the structure,” Computers & Structures, vol. 85, pp. 891–910, 2007.
  13. “Open System for Earthquake Engineerng Simulation,” Pacific Earthquake Engineering Research Centre, University of California, Berkeley, 2015.
  14. N. Anandavalli, N. Lakshmanan, N. R. Iyer, A. Prakash, K. Ramanjaneyulu, J. Rajasankar, and C. Rajagopal, “Behavior of a Blast Loaded Laced Reinforced Concrete Structure,” Defence Science Journal, vol. 62, pp. 284-289, 2012.
  15. F. FEMA, “426: Reference Manual to Mitigate Potential Terrorist Attacks against Buildings-Buildings and Infrastructure Protection Series,” ed: Federal Emergency Management Agency, 2003.
  16. E. B. Williamson et al, “Blast-Resistant Highway Bridges: Design and Detailing Guidelines,” Transportation Research Board of the National Academies, National Cooperative Highway Research Program, NCHRP REPORT 645, Washington, 2010.
  17. C. Oswald, “Component Explosive Damage Assessment Workbook (CEDAW) Methodology Manual V1.0.,” prepared for Protective Design Centre U.S. Army Corps of Engineers. Baker Risk Project no. 02-0752-001, 2005.
  18. Unified Facilities Criteria, “Structures to Resist the Effects of Accidental Explosions,” UFC 3-340-02, Dept. of Defense. Washington (DC), 2008.
  19. U. Army, U. Navy, and U. A. Force, “Structures to resist the effects of accidental explosions,” TM5-1300, p. 1400, 1990.
  20. D. Cormie, G. Mays, and P. D. Smith, “Blast effects on buildings,” 2nd ed. London: Thomas Telford, 2009.
  21. دفتر مقررات ملی ساختمان، پیش‌نویس مبحث21 مقررات ملی ساختمان، پدافند غیرعامل، تهران، نشر توسعه ایران، 1388.
  22. W. E. Baker, P. A. Cox, P. S. Westine, J. J. Kulesz, and R. A. Strehlow, “Explosion Hazards and Evaluation,” New York: Elsevier Scientific, 1983.
  23. R. Sachs, “The Dependence of Blast on Ambient Pressure and Temperature (Proj. 776),” Ballistic Research Lab, Aberdeen Prooving Ground, 1944.
  24. M. Y. H. Bangash and T. Bangash, “Explosion-Resistant Buildings: Design, Analysis, and Case Studies,” Germany: Springer, 2006.
  25. H. L. Brode, “Numerical Solutions of Spherical Blast Waves,” Journal of Applied Physics, vol. 26, pp. 766-775, 1955.
  26. S. Farouk, “Near-Field Explosion Effects on Reinforced Concrete Columns: An Experimental Investigation,” Master of Civil Engineering thesis, Carleton University Ottawa, 2014.
  27. A. Braimah, S. Farouk, and B. V. Rosen, “ Near-Field Explosion Effects on Reinforced Concrete Columns,” Proceedings of 5th International Workshop on Performance, Protection & Strengthening of Structures under Extreme Loading, USA, pp. 505-514, 2015.
  28. زمانی، جمال، مقدمه‌ای بر مکانیک انفجار، تهران، انتشارات دانشگاه خواجه نصیرالدین طوسی، 1391.
  29. D. Asprone, R. Frascadore, M. D. Ludovico, A. Prota, and G. Manfredi, “Influence of strain rate on the seismic response of RC structures,” Engineering Structures, vol. 35, pp. 29-36, 2012.
  30. L. J. Malvar and J. E. Crawford, “Dynamic Increase Factors for Concrete,” in 28th DDESB Seminar, Orlando, USA, 1998.
  31. H. Schuler, C. Mayrhofer, and K. Thoma, “Spall Experiments for the Measurement of the Tensile Strength and Fracture Energy of Concrete at High Strain Rates,” International Journal of Impact Engineering, vol. 32, pp. 1635-1650, 2006.
  32. T. Krauthammer, H. M. Shanaa, and A. Assadi, “Response of Structural Concrete Elements to Severe Impulsive Loads,” Computers & Structures, vol. 53, pp. 119-130, 1994.
  33. G. Razaqpur, W. Mekky, and S. Foo, “Fundamental Concepts in Blast Resistance Evaluation of Structures,” Canadian Journal of Civil Engineering, vol. 36, pp. 1292-1304, 2009.
  34. L. J. Malvar and J. E. Crawford, “Dynamic Increase Factors for Steel Reinforcing Bars,” in 28th DDESB Seminar, Orlando, USA, 1998.
  35. H. Y. Low and H. Hao, “Reliability Analysis of Reinforced Concrete Slabs under Explosive Loading,” Structural Safety, vol. 23, pp. 157-178, 2001.
  36. Federal Institute of Technology, Model Code 2010, First Complete Draft, fib Bulletin 55, Switzerland, vol. 1, 2010.
  37. “Fib Federation Internationale du beton (fib),” Code-type models for concrete behavior: State-of-the-art Report, 2013.
  38. S. Mazzoni, F. McKenna, et al, “OpenSees Command Language Manual,” University of California, Berkeley, 2006.
  39. J. B. Mander, M. J. Priestley, and R. Park, “Theoretical stress-strain model for confined concrete,” Journal of structural engineering, vol. 114, pp. 1804-1826, 1988.
  40. D. O. Dusenberry, “Handbook for Blast-Resistant Design of Buildings,” USA: JOHN WILEY & SONS, 2010.