عوامل مؤثر بر الکتروریسندگی نانوالیاف مورد استفاده در پدافند شیمیایی و میکروبی

نویسندگان

دانشگاه صنعتی مالک اشتر

چکیده .

عوامل شیمیایی و میکروبی مورد استفاده در جنگ­ها می­توانند صدمات جبران­ ناپذیری را به همراه داشته باشند و زندگی انسان‌ها و سایر موجودات زنده را با نابودی کامل مواجه سازند. از متداول­ترین عامل­های شیمیایی که در جنگ­ها مورد استفاده قرار می­گیرند می­توان به گاز اعصاب، گاز خردل، عامل خون، آرسین، گاز کلر و فسژن اشاره کرد. فرآیند الکتروریسندگی روشی برای تولید انواع نانوالیاف و میکروالیاف از محلول­های مواد پلیمری و یا محلول­های کامپوزیتی متشکل از پلیمر- نانوذرات و همچنین مذاب مواد مذکور است. از جمله کاربردهای نانوالیاف تولید شده به روش الکتروریسندگی، استفاده از آن‌ها برای تولید پوشش­های محافظ در برابر عوامل شیمیایی و میکروبی است که برحسب نوع ماده فعال مورد استفاده در تهیه نانوالیاف، قادر به تخریب یا خنثی­ سازی عوامل شیمیایی و بیولوژیکی مختلف می­باشد. در این مقاله مروری، ابتدا به مکانیسم فرآیند الکتروریسندگی و پارامترهای اثرگذار آن اشاره شده و سپس کارهای انجام شده در زمینه تولید نانوالیاف‌های محافظ در برابر عوامل شیمیایی و میکروبی با این روش مورد بررسی قرار گرفته است. همچنین، مکانیسم­های تخریب عوامل شیمیایی و بیولوژیکی مختلف بر حسب نوع ماده فعال موجود در نانوالیاف مورد مطالعه قرار گرفته است. بر اساس مطالعات انجام گرفته، نانوالیاف کامپوزیتی نایلون 6 / اکسیدروی به عنوان مناسب­ترین گزینه برای تولید لباس­های محافظ در برابر عوامل شیمیایی و میکروبی پیشنهاد می­گردد.  

کلیدواژه‌ها


عنوان مقاله [English]

Factors affecting the electrospinning of nanofibers used in chemical and microbial defense

  1. F. R. Sidell and J. Borak, “Chemical warfare agents: II. Nerve agents,” Ann. Emerg. Med., vol. 21, pp. 865-871, 1992.
  2. R. Ramaseshan, S. Sundarrajan, Y. Liu, R. S. Barhate, N. L. Lala, and S. Ramakrishna, “Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants,” Nanotechnology, vol. 17, pp. 2947-2953, 2006.
  3. https://www.nytimes.com/2016/11/21/world/middleeast/isis-chemical-weapons-syria-iraq-mosul.html.
  4. http://www.iribnews.ir/fa/news/1463321.
  5. Force, P.G.W.I.T. Khamisiyah, “A Historical Perspective on Related Intelligence,” Washington, DC: Central Intelligence Agency, 1997.
  6. A. J. Russell, G. A. Berberich, G. F. Drevon, and R. R. Koepsel, “Biomaterials for mediation of chemical and biological warfare agents,” Annu. Rev. Biomed. Eng., vol. 5, pp. 1-27, 2003.
  7. B. Maddah, A. Aminifar, and M. Sharifi, “Properties and ability of sodium dichloroisocyanurate a decontamination solution in a view of passive defence,” Passive Defense vol. 2, pp. 2-6, 2011. (In Persian)
  8. M. E. Minaei, M. Saadati, M. Najafi, H. Honari, and Sh. Nazarian, “The nano-biosensors tools for detecting biological agents in bioterrorism and biological threats,” Passive Defense, vol. 3, pp. 12-19, 2012. (In Persian)
  9. M. Ashrafi, “Threat of water resource by chemical agents,” Passive Defense, vol. 3, pp. 50-56, 2012. (In Persian)
  10. R. Rakhi and M. Lekshmi, “Reduced graphene oxide based ternary nanocomposite cathodes for high-performance aqueous asymmetric supercapacitors,” Electrochimica Acta., vol. 231, pp. 539-548, 2017.
  11. Y. Mosaei Oskoei, H. Fattahi, J. Hassanzadeh, and A. Mousavi Azar, “Selective determination of trinitrotoluene based on energy transfer between carbon dots and gold nanoparticles,” Analytical Science, vol. 32, pp. 193-199, 2016.
  12. F. Akhgari, H. Fattahi, and Y. Mosaei Oskoei, “Recent advances in nanomaterial-based sensors for detection of trace nitroaromatic explosives, Sensor and Actuators, B: Chemical,” vol. 221, pp. 867-878, 2015.
  13. C. Parisi, M. Vigani, and E. Rodriguez-Cerezo, “Agricultural nanotechnologies: what are the current possibilities?,” Nano Today, vol. 10, no. 2, pp. 124-127, 2015.
  14. H. Fattahi, M. Amani, Y. Mosaei Oskoei, and N. Arsalani, “Novel thermal stable polymeric nanocomposite based on poly(ethyl vinyl ether - alt- maleic anhydride) and organo-modified montmorillonite,” Polymer Composites, 2017. (In Persian), doi: 10.1002/pc.24425.
  15. P. Eghbali, H. Fattahi, S. Laurent, R. N. Muller, and Y. Mosaei Oskoei, “Fluorophore-tagged superparamagnetic iron oxide nanoparticles as bimodal contrast agents for MR/optical imaging,” Journal of the Iranian Chemical Society, vol. 13, no. 1, pp. 87-93, 2016.
  16. N. Arsalani, H. Fattahi, S. Laurent, C. Burtea, L. Vander Elst, and R. N. Muller, “Polyglycerol-grafted superparamagnetic iron oxide nanoparticles: highly efficient MRI contrast agent for liver and kidney imaging and potential scaffold for cellular and molecular imaging,” Contrast Media and Molecular Imaging, vol. 7, no. 2, pp. 185-194, 2012.
  17. H. Fattahi, S. Laurent, F. Liu, N. Arsalani, L. Vander Elst, and R. N. Muller, “Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics,” Nanomedicine (Lond)., vol. 6, no. 3, pp. 529-544, 2011.
  18. F. Liu, S. Laurent, H. Fattahi, L. Vander Elst, and R. N. Muller, “Superparamagnetic nanosystems besed on iron oxide nanoparticles for biomedical imaging,” Nanomedicine (Lond), vol. 6, no. 3, pp. 519-528, 2011.
  19. N. Arsalani, H. Fattahi, and M. Nazarpoor, “Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent,” eXPRESS Polymer Letters, vol. 4, no. 6, pp. 329-338, 2010.
  20. N. Bhardwaj and N.S.C. Kundu, “Electrospinning: a fascinating fiber fabrication technique”, Biotechnol. Adv., vol. 28, pp. 325-347, 2010.
  21. H. S. Bae, A. Haider, M. K. Selim, D. Y. Kang, E. J. Kim, and I. K. Kang, “Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine,” J. Polym. Res., vol. 20, pp. 1-7, 2013.
  22. S. Haider, Y. AL-Zeghayer, F. A. A. Ali, A. Haider, A. Mahmood, W. A. Al-Masry, M. Imran, and M. O. Aijaz, “Highly aligned narrow diameter chitosan electrospun nanofibers,” J. Polym. Res., vol. 20, pp. 1-11, 2013.
  23. M. J. Laudenslager and W. M. Sigmund, “Electrospinning, in Encyclopedia of Nanotechnology,” Springer, pp. 769-775, 2012.
  24. T. J. Sill and H. A. von Recum, “Electrospinning: applications in drug delivery and tissue engineering,” Biomaterials, vol. 29, pp. 1989-2006, 2008.
  25. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. B. Tan, “The effect of processing variables on the morphology of electrospun nanofibers and textiles,” Polymer, vol. 42, pp. 261-272, 2001.
  26. S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, “Micro-and nanostructured surface morphology on electrospun polymer fibers,” Macromolecules, vol. 35, pp. 8456-8466, 2002.
  27. V. Pillay, C. Dott, Y. E. Choonara, C. Tyagi, L. Tomar, P. Kumar, L. C. du Toit, and V. MK. Ndesendo, “A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications,” Journal of Nanomaterials, 2013.
  28. A. Luzio, E. V. Canesi, C. Bertarelli, and M. Caironi, “Electrospun polymer fibers for electronic applications,” Materials, vol. 7, pp. 906-947, 2014.
  29. B. Sun, Y. Long, H. Zhang, M. Li, J. Duvail, X. Jiang, and H. Yin, “Advances in three-dimensional nanofibrous macrostructures via electrospinning,” Progress in Polymer Science, vol. 39, pp. 862-890, 2014.
  30. C. J. Angammana and S. H. Jayaram, “Analysis of the effects of solution conductivity on electrospinning process and fiber morphology,” IEEE Transactions on industry applications, vol. 47, pp. 1109-1117, 2011.
  31. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer, vol. 43, pp. 4403-4412, 2002.
  32. J. S. Choi, S. W. Lee, L. Jeong, S. -H. Bae, B. C. Min, G. H. Youk, and W. H. Park, “Effect of organosoluble salts on the nanofibrous structure of electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate),” International Journal of Biological Macromolecules, vol. 34, pp. 249-256, 2004.
  33. J. Lannutti, D. Reneker, T. Ma, D. Tomasko, and D. Farson, “Electrospinning for tissue engineering scaffolds,” Materials Science and Engineering: C, vol. 27, pp. 504-509, 2007.
  34. A. G. Kanani and S. H. Bahrami, “Review on electrospun nanofibers scaffold and biomedical applications,” Trends Biomater Artif Organs, vol. 24, pp. 93-115, 2010.
  35. J. Pelipenko, J. Kristl, B. Janković, S. Baumgartner, and P. Kocbek, “The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers,” Int. J. Pharm., vol. 456, pp. 125-134, 2013.
  36. S. Huan, G. Liu, G. Han, W. Cheng, Z. Fu, Q. Wu, and Q. Wang, “Effect of experimental parameters on morphological, mechanical and hydrophobic properties of electrospun polystyrene fibers,” Materials, vol. 8, pp. 2718-2734, 2015.
  37. S. De Vrieze, T. Van Camp, A. Nelvig, B. Hagström, P. Westbroek, and K. De Clerck, “The effect of temperature and humidity on electrospinning,” J. Mater. Sci., vol. 44, pp. 1357-1362, 2009.
  38. N. B. Munro, A. P. Watson, K. R. Ambrose, and G. D. Griffin, “Treating exposure to chemical warfare agents: implications for health care providers and community emergency planning,” Environ. Health Persp., vol. 89, p. 205, 1990.
  39. S. Reutter, “Hazards of chemical weapons release during war: new perspectives,” Environ. Health Persp., vol. 107, p. 985, 1999.
  40. S. Sundarrajan and S. Ramakrishna, “Fabrication of nanocomposite membranes from nanofibers and nanoparticles for protection against chemical warfare stimulants,” J. Mater. Sci., vol. 42, pp. 8400-8407, 2007.
  41. S. Rajagopalan, O. Koper, S. Decker, K. J. Klabunde, “Nanocrystalline metal oxides as destructive adsorbents for organophosphorus compounds at ambient temperatures,” Chem- Eur. J., vol. 8, pp. 2602-2607, 2002.
  42. Q. Zhou, C. Tang, Y. -Z. Wang, and L. Zheng, “Catalytic degradation and dechlorination of PVC-containing mixed plastics via Al-Mg composite oxide catalysts,” Fuel, vol. 83, pp. 1727-1732, 2004.
  43. S. Horikawa, Y. Takai, H. Ukri, N. Azuma, and A. Ueno, “Chlorine gas recovery from polyvinyl chloride,” J. Anal. Appl. Pyrol., vol. 51, pp. 167-179, 1999.
  44. J. A. Moss, S. H. Szczepankiewicz, E. Park, and M. R. Hoffmann, “Adsorption and photodegradation of dimethyl methylphosphonate vapor at TiO2 surfaces,” J. Phys. Chem. B, vol. 109, pp. 19779-19785, 2005.
  45. A. Fujishima, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, pp. 37-38, 1972.
  46. H. Zhang, G. Wang, D. Chen, X. Lv, and J. Li, “Tuning photoelectrochemical performances of Ag-TiO2 nanocomposites via reduction/oxidation of Ag,” Chem. Mater., vol. 20, pp. 6543-6549, 2008.
  47. C. Hu, Y. Lan, J. Qu, X. Hu, and A. Wang, “Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria,” J. Phys. Chem. B, vol. 110, pp. 4066-4072, 2006.
  48. S. -Y. Ryu, M. -K. Park, and S.-Y. Kwak, “Silver-titania/polyurethane composite nanofibre mat for chemical and biological warfare protection,” Int. J. Nanotechnol., vol. 10, pp. 771-788, 2013.
  49. M. Roso, S. Sundarrajan, D. Pliszka, S. ramakrishna, and M. Modesti, “Multifunctional membranes based on spinning technologies: the synergy of nanofibers and nanoparticles,” Nanotechnology, vol. 19, p. 285707, 2008.
  50. F. Wilkinson, W. P. Helman, and A. B. Ross, “Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation,” J. Phys. Chem. Ref. Data, vol. 24, pp. 663-677, 1995.
  51. O. Shimizu, J. Watanabe, K. Imakubo, and S. Naito, “Absolute Quantum Yields and Lifetimes of Photosensitized Phosphorescence of Singlet Oxygen O2 (1. DELTA. g) in Air-Saturated Aqueous and Organic Solutions of Phenalenone,” Chem. Lett., pp. 67-68, 1999.
  52. M. Manceau, A. Rivaton, and J. L. Gardette, “Involvement of Singlet Oxygen in the Solid‐State Photochemistry of P3HT,” Macromol. Rapid Commun., vol. 29, pp. 1823-1827, 2008.
  53. A. Toutchkine and E. L. Clennan, “The reactions of singlet oxygen with β-chlorosulfides, The role of hydroperoxy sulfonium ylides in the oxidative destruction of chemical warfare simulants,” Tetrahedron lett., vol. 40, pp. 6519-6522, 1999.
  54. K. Ishii, “Functional singlet oxygen generators based on phthalocyanines,” Coord. Chem. Rev., vol. 256, pp. 1556-1568, 2012.
  55. T. Nyokong, “Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines,” Coord. Chem. Rev., vol. 251, pp. 1707-1722, 2007.
  56. S. E. Maree and T. Nyokong, “Syntheses and photochemical properties of octasubstituted phthalocyaninato zinc complexes,” J. Porphyr. Phthalocya., vol. 5, pp. 782-792, 2001.
  57. A. Ogunsipe, D. Maree, and T. Nyokong, “Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives,” J. Mol. Struct., vol. 650, pp. 131-140, 2003.
  58. A. Ogunsipe and T. Nyokong, “Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives,” J. Mol. Struct., vol. 689, pp. 89-97, 2004.
  59. R. T. Gephart, P. N. Coneski, and J. H. Wynne, “Decontamination of chemical-warfare agent simulants by polymer surfaces doped with the singlet oxygen generator zinc octaphenoxyphthalocyanine,” ACS Appl. Mater. Interfaces, vol. 5, pp. 10191-10200, 2013.
  60. M. Eskandari, N. Haghighi, V. Ahmadi, F. Haghighi, and S. R. Mohammadi, “Growth and investigation of antifungal properties of ZnO nanorod arrays on the glass,” Physica B: Condensed Matter, vol. 406, pp. 112-114, 2011.
  61. J. Rodriguez, J. F. Paraguay-Delgado, A. Lopez, J. Alarcon, and W. Estrada, “Synthesis and characterization of ZnO nanorod films for photocatalytic disinfection of contaminated water,” Thin Solid Films, vol. 519, pp. 729-735, 2010.
  62. Y. Liu, C. R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, and M. Wraback, “Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD,” J. Electron. Mater., vol. 29, pp. 69-74, 2000.
  63. N. Vitchuli, Q. Shi, et al., “Multifunctional ZnO/ Nylon 6 nanofiber mats by an electrospinning–electrospraying hybrid process for use in protective applications,” Sci. Technol. Adv. Mater., vol. 12, pp. 1-7, 2011.
  64. A. Vanangamudi, S. Hamzah, G. Singh, “Synthesis of hybrid hydrophobic composite air filtration membranes for antibacterial activity and chemical detoxification with high particulate filtration efficiency (PFE),” Chem. Eng. J., vol. 260, pp. 801-808, 2015.
  65. K. C. Krogman, J. L. Lowery, N. S. Zacharia, G. C. Rutledge, and P. T. Hammond, “Spraying asymmetry into functional membranes layer-by-layer,” Nat. Mater., vol. 8, pp. 512-518, 2009.
  66. L. Chen, L. Bromberg, et al., “Multifunctional electrospun fabrics via layer-by-layer electrostatic assembly for chemical and biological protection,” Chem. Mater., vol. 22, pp. 1429-1436, 2010.