تاثیر انفجار بر سازه های زیرزمینی حفاری شده در محیط های آبدار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 تهران/ دانشگاه امام حسین (ع)

2 دانشگاه تربیت مدرسمحل کار: مهندسین مشاور توسعه را آهن ایران (مترا)

چکیده .

امروزه فضاهای زیرزمینی به­واسطه افزایش جمعیت، توسعه فناوری، افزایش تهدیدات نظامی و صرفه­جویی­های اقتصادی روز به روز در حال افزایش می­باشد. میزان تاثیرپذیری فضاهای زیرزمینی در برابر بارهای انفجاری ناشی از تهاجم دشمن، به­طور مستقیم به موفقیت و کارآیی پدافند غیرعامل بستگی دارد. از طرف دیگر، پایداری فضاهای امن زیرزمینی در محیط­های مختلف زمین­شناسی بسیار حائز اهمیت می باشد. با توجه به افزایش نیاز برای اجرای این سازه­ها،  ممکن است بسیاری از این پروژه­ها در شرایط نامطلوب زمین­شناسی اجراء شوند. بنابراین، لازم است پایداری این فضاها برای محیط­های با واحدهای زمین­شناسی متفاوت مورد تجزیه و تحلیل قرار گیرند. در این مقاله با استفاده از روش عددی المان مجزای یک کد عددی توسط نرم­افزار UDEC توسعه داده شده است. در کد عددی توسعه داده شده، تاثیر سطح آب بر روی لاینینگ تونل بررسی شده است. برای بررسی تاثیر سطح آب بر روی پایداری تونل، فشار 10 تن ماده منفجره به صورت نمایی به بالای تونل اعمال شده است. بررسی­های انجام­شده نشان می­دهد که با افزایش سطح آب، صدمات ناشی از انفجار به پوشش تونل بیشتر می­شود. 

کلیدواژه‌ها


عنوان مقاله [English]

The Influence of Explosion on the Underground Structures in Watery Media

چکیده . [English]

Nowadays, underground structures are increasing day by day due to the population increase, technology development, increasing of military threat and economic saving. The impact rate of underground spaces against explosive loads caused by enemy invasion depends directly on the success and effectiveness of passive defense. On the other hand, stability of the underground spaces is very crucial in various lithological conditions. Due to the increased need for the implementation of these structures, many of these projects may be carried out in unfavorable geological conditions. Therefore, it is necessary to analyze the stability of these spaces for different lithology conditions. In the present study, by means of numerical methods of discrete element, a code has been developed by UDEC software. In the numerical developed code, the influence of water level on the tunnel final support has been investigated. To investigate the effect of water level on the tunnel stability, the pressure of 10 tons of explosives has been exponentially applied to the top of the tunnel. Research indicates that as the water level rises, the damage caused by the explosion increases to the tunnel support.

  1.  

    1. G.W. Ma, H. Hao, and Y. X. Zhou, “Modeling of wave propagation induced by underground explosion,” Computer Geotech. J., vol. 22 (3/4), pp. 283-303, 1998.##
    2. S. G. Chen and J. Zhao, “A study of UDEC modeling for blast wave propagation in jointed rock masses,” Int. J. Rock Mech. Min. Sci., vol. 35, no.1, pp. 93-99, 1998.##
    3. S. C. Fan, Y. Y. Jiao, and J. Zhao, “On modelling of incident boundary for wave propagation in jointed rock masses using discrete element method,” Computers and Geotechnics, vol. 31, pp. 57-66, 2004.##
    4. J. P. Morris, M. B. Rubin, S. C. Blair, L. A. Glenn, and F. E. Heuze, “Simulations of underground structures subjected to dynamic loading using the distinct element method,” Engineering computations, vol. 21, pp. 384-408, 2004.##
    5. Y. Lu, “Underground blast induced ground shock and its modeling using artificial neural network,” J. Computers and Geotechnics, vol. 32, pp. 164–178, 2005.##
    6. F. E. Heuze and J. P. Morris, “Insights into ground shock in jointed rocks and the response of structures therein,” Int. J. Rock Mech. & Mining Sci., vol. 44, pp. 647- 676, 2006.##
    7. Y. Y. Jiao, X. L. Zhang, J. Zhao, and Q. S. Liu, “Viscous boundary of DDA for modeling stress wave propagation in jointed rock,” Int. J. Rock Mech. & Mining Sci., vol. 44, pp. 1070–1076, 2007.##
    8. X. Chang-jing, S. Zhen-duo, T. Lu-lu, L. Hong-bin, W. Lu, and X.- W. fang, “Numerical Analysis of Effect of Water on Explosive Wave Propagation in Tunnels and Surrounding Rock,” J China Univ Mining & Technol 2007, vol. 17, no. 3, pp. 0368–0371, 2007.##
    9. Z. Wang, Y. Li, and J. G. Wang, “Numerical analysis of     blast-induced wave propagation and spalling damage in a rock plate,” Int. J. Rock Mech. Min. Sci., vol. 45, pp. 600-608, 2008.##
    10. A. E. Mitelman, “Modelling of blast-induced damage in tunnels using a hybrid finite-discrete numerical approach,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 6, pp. 565-573, 2014.##
    11. X. F. Deng, S. G. Chen, J. B. Zhu, Y. X. Zhou, Z. Y. Zhao, and J. Zhao “UDEC–AUTODYN Hybrid Modeling of a          Large-Scale Underground Explosion Test,” Rock Mech Rock Eng 48,pp. 737–747, 2015.##

     

    1. P. D. Smith and J. G. Hetherington, “Blast and Ballistic Loading of Structures,” Oxford, England: Butterworth-Heinemann, 1994.##
    2. T. L. Geersb and K. S. Hunter, “An Integrated Wave-Effects Model for an Underwater Explosion Bubble,” Journal of the Acoustical Society of America. vol. 111, no. 4. pp.            1,584–1,601, 2002.##
    3. E. Klaseboer, K. C. Hung, C. Wang, C. W. Wang, B. C. Khoo, P. Boyce, S. Debono, and H. Charlier, “Experimental and Numerical Investigation of the Dynamics of an Underwater Explosion Bubble Near a Resilient/Rigid Structure,” Journal of Fluid Mechanics, vol. 537, pp. 387–413, 2005.##
    4. M. Riley, “Modeling Gas Bubble Behaviour and Loading on a Rigid Target Due to Close-Proximity Underwater Explosions: Comparison to Tests Conducted at DRDC Suffield,” DRDC Atlantic TM 2010-238. Canada: Defence R&D               Canada–Atlantic, Nov. 2010a.##
    5. M. Riley, “Analytical Solutions for Predicting Underwater Explosion Gas Bubble Behaviour,” DRDC Atlantic TM 2010-237. Canada: Defence R&D Canada–Atlantic, Nov. 2010b.##
    6. ITASCA Consulting Group Inc., UDEC: Universal Distinct Element Code User's Manual, Version 6.0., 2014.##
    7. Final report of tunnel km 47+117, Metra Consuliting engineering, 2017. (in Persian).##
    8. S. M. Day, “Test Problem for Plane Strain Block Motion Codes,” S-Cubed Memorandum to Itasca, May 1985.##
    9. R. L.Kuhlmeyer and J. Lysmer, “Finite element method accuracy for wave propagation problems,” J. Soil Mech., Foundations Div., vol. 99, pp. 421-427, 1973.##
    10. DOD, “Structures To Resist the Effects of Accidental Explosions,” Unified Facilities Criteria (UFC) 3–340–02. Arlington, Virginia: Department of Defense, December 2008.##
    11. M. Amini Mazrae No and E. Kavoosian, “Hazard (Plastic) Zone Estimation of Tuff Rock Mass Produced by TNT Explosion,” Passive Defense Quarterly, vol. 5, no. 3, 2008. (in Persian)##