مروری بر روش‌های طراحی سیستم‌ زمین و حفاظت صاعقه سایت‌های مخابراتی در ارتفاع بالا و زمین‌های صخره‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیاردانشگاه امام حسین(ع)

2 کارشناسی ارشد دانشگاه شهید بهشتی(ره)

چکیده

رعایت اصول پدافند غیر‌عامل در طراحی و اجرای طرح‌های حساس و مهم و نیز تاسیسات زیربنایی و به‌منظور پیشگیری و کاهش مخاطرات ناشی از سوانح طبیعی از جمله صاعقه، لازم و ضروری می‌باشد. صاعقه یک پدیده طبیعی جوی است و هیچ وسیله و روشی وجود ندارد که قادر باشد از تخلیه صاعقه جلوگیری نماید. برخورد مستقیم و غیر‌مستقیم صاعقه به ساختمان‌ها و انتقال جریان آن از طریق خطوط خدماتی ورودی به آن‌ها می‌تواند برای انسان‌ها، ساختمان‌ها و محتویات با ارزش آن‌ها، آسیب زننده و خطرناک باشد، لذا به‌کارگیری تمهیدات لازم برای حفاظت در مقابل صاعقه امری ضروری است. از آنجایی‌که عموما ایستگاه‌های مخابراتی و داده در نقاط مرتفع کوهستانی و یا در فضاهای باز مستقر هستند، اهمیت حفاظت در برابر صاعقه در آن‌ها بسیار با اهمیت می‌باشد. در این مقاله، مروری بر روش‌های مختلف طراحی و اجرای سیستم‌های حفاظت در برابر صاعقه  سایت‌های مخابراتی در نقاط با ارتفاع بالا و زمین‌های صخره‌ای از نگاه استاندارها و توصیه نامه‌های بین‌المللی ارائه می‌گردد. همچنین در این مقاله به‌منظور لزوم داشتن یک سیستم حفاظتی مناسب و با کیفیت، استاندارهای مخابراتی، نظامی و بین‌المللی مختلفی مورد تحلیل و بررسی قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

A Review on Earthing Systems and Lightning Protection Techniques for Telecommunication Towers on Mountains and Rocky Land

نویسندگان [English]

  • R. Ghaffarpour 1
  • M. Louni 2
1 IHU
2 Shahid beheshti university
چکیده [English]

Passive defense principles are essential in the design and implementation of vital and critical plans as well as infrastructures to prevent and reduce the risks of natural disasters such as lightning. Lightning is a natural atmospheric phenomenon and there are no means to prevent it from happening. Direct and indirect exposure to lightning and the transmission of lightning discharge through the buildings and their inbound service lines can be harmful and hazardous to humans, buildings and their valuable contents, so it is imperative that measures be taken to protect against lightning. Since telecommunications and data stations are generally located in highlands or outdoors, lightning protection is essential and urgent. This paper provides an overview of the different methods of designing and implementing lightning protection systems and grounding of telecommunication sites at high altitudes and rocky terrains from the standpoint of international standards and recommendations. In this article, a review and analysis of earthing systems and lightning protection techniques and related international, military and communication standards for telecommunication towers on mountains and rocky land have been presented in order to design and propose a good quality protection system in accordance with relevant standards.

کلیدواژه‌ها [English]

  • Lightning Protection
  • Earthing System
  • Mountainous Areas
  • Telecommunication Sites
  • International Standards
##[1] احمدی، اسحاق، عباسی سمنگانی، محمود، بررسی اثر طول خط انتقال در میرایی اضافه ولتاژهای ناشی از اصابت مستقیم موج گذرای صاعقه در خط انتقال تک مداره 400 کیلوولت، پنجمین کنفرانس بین المللی پژوهش های کابردی در مهندسی برق مکانیک و مکاترونیک، تهران، 1397.
##[2] پارسا، محمد، سیدامین، سعید، اکبری رکن آبادی، حمیدرضا، بررسی میزان تاثیر جریان عبوری از سامانه زمین بر تخلیه صاعقه در شبکه قدرت، دومین کنفرانس ملی پژوهش های نوین در مهندسی برق، بابل، موسسه علمی تحقیقاتی کومه علم آوران دانش، 1395.
##[3] نیاستی، محسن، رشیدی، حسین، مطالعه­ی حفاظت اضافه ولتاژ القایی ناشی از صاعقه بر روی شبکه ی توزیع، چهارمین کنفرانس مهندسی برق و الکترونیک ایران، گناباد، دانشگاه آزاد اسلامی واحد گناباد، 1391.
[4] F. A. M. Rizk, “Switching impulse strength of air insulation: leader inception criterion,” IEEE Trans. Power Del., vol. 4, no. 4, pp. 2187- 2195, Oct. 1989.##
[5] F. A. M. Rizk, “Modeling of transmission line exposure to direct lightning strokes,” IEEE Trans. Power Del., vol. 5, no. 4, pp. 1983- 1997, Nov. 1990.##
[6] F. A. M. Rizk, “Modeling of lightning incidence to tall structures part i: theory, ” IEEE Trans. Power Del., vol. 9, no. 1, pp. 162-171, Jan. 1994.##
[7] F. A. M. Rizk, “Modeling of lightning incidence to tall structures part ii: application,” IEEE Trans. Power Del., vol. 9, no. 1, pp. 172- 193, Jan. 1994.##
[8] L. Dellera and E. Garbagnati, “Lightning stroke simulation by means of the leader progression model part i: description of the model and evaluation of exposure of free-standing structures,” IEEE Trans. Power Del., vol. 5, no. 4,                pp. 2009-2022, Nov. 1990.##
[9] L. Dellera and E. Garbagnati, “Lightning stroke simulation by means of the leader progression model part ii: exposure and shielding failure evaluation of overhead lines with assessment of application graphs,” IEEE Trans. Power Del., vol. 5, no. 4, pp. 2023-2029, Nov. 1990.##
[10] U. Kumar and N. T. Joseph, “Analysis of air termination system of the lightning protection scheme for the indian satellite launch pad,” in IEE Proc. Science, Measurement, and Technology, vol. 150, no. 1, pp. 3-10, Jan. 2003.##
[11] J. He, Y. Tu, R. Zeng, J. B. Lee, S. H. Chang, and Z. Guan, “Numeral analysis model for shielding failure of transmission line under lightning stroke,” IEEE Trans. Power Del., vol. 20, no. 2, pp. 815-821, Apr. 2005.##
##[12]یحیی آبادی، صدوقی، نمونه سازی و آنالیز عملکرد صاعقه گیر دکلهای مخابراتی به منظور هماهنگی سیستم حفاظت با شرایط محیطی، نشریه مهندسی برق و مهندسی کامپیوتر ایران، الف- مهندسی برق، سال 13 ، شماره  2، پاییز  1394.
[13] R. Markowska, “Induced and ground potential voltage components in analysis of separation distance for lightning protection in buildings,” Przeklad Elektrotechniczny, vol. 92, pp. 265–270, 2017.##
[14] A. R. Panicali, J. C. O. Silva, C. F. Barbosa, and N. V. B. Alves, “Preventing sparks between external LPS and structure conductive parts,” Electric Power Systems Research, vol. 153, pp. 144-151, 2017.##
[15] J. Bendík, M. Cenký, M. Pípa, A. Kment, M. Chudý, and A. Beláň, “Experimental verification of material coefficient defining separation distance for external lightning protection system,” Journal of Electrostatics, vol. 98, pp. 69-74, 2019.##
[16]Yang Zhang, Hongcai Chenb, and Yaping Du, “Lightning protection design of solar photovoltaic systems: Methodology and guidelines” Electric Power Systems Research, vol. 174, pp. 121-132, 2019.##
[17]K. Yamamoto, T. Noda, S. Yokoyama, and A. Ametani, “Experimental and analytical studies of lightning overvoltage in wind turbine generator systems,” Electric Power Systems Research, vol. 79, pp. 436–442, 2019.##
 [18]N. I. Ahmad, et al., “Lightning protection on photovoltaic systems: a review on current and recommended practices,” Renew. Sustain. Energy Rev., vol. 82, pp. 1611–1619, 2018.##
[19]C. A. Charalambous, N. D. Kokkinos, and N. Christofides, “External lightning protection and grounding in large-scale photovoltaic applications,” IEEE Trans. Electromagn. Compat., vol. 56, pp. 427–434, 2015.##
[20] R. H. Golde, “Lightning Protection,” Edward Arnold Publishing Co., London, Britain, 1973.##
[21] M. A. Uman, “The Art and Science of Lightning Protection,” Cambridge, U. K.: Cambridge University Press, 2008.##
[23] Q. B. Zhou and Y. Du, “Numerical analysis of the charge distribution on building structure in the