بررسی قابلیت اطمینان و دسترس‌پذیری سامانه‌های تولید انرژی در شناورهای دریایی با هدف افزایش ضریب اطمینان پدافندی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی برق، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران

2 استادیار دانشکده فنی مهندسی، واحد نور، دانشگاه آزاد اسلامی، نور، ایران

3 استادیار دانشکده فنی مهندسی، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران

چکیده .

جوامع امروزی خطرات امنیتی برای منابع انرژی الکتریسیته در کشتی‌ها، افزایش قیمت سوخت، تشدید قوانین بین‌المللی در مورد آلودگی، کمبود فضا و سوخت در کشتی، باعث نگرانی در مباحث بین‌الملل شده است. امروزه با پیشرفت فنّاوری و وقوع جنگ‌های مدرن دریایی، منابع تولید انرژی شناورها، به‌عنوان یکی از اهداف استراتژیک مطرح‌شده‌اند. همین موضوع سبب شده است که شناسایی تهدیدات در حوزه تولید انرژی الکتریسیته در شناورها، از اهمیت بسزایی برخوردار باشد. هدف این مقاله، بررسی و محاسبه میزان دسترس‌پذیری و قابلیت اطمینان انواع سامانه‌های تولید انرژی در شناورها است؛ و در همین راستا با توجه به نوع سیستم تولید انرژی در شناورها و مزایا و معایب آن‌ها، مدل مارکوف جهت محاسبه قابلیت اطمینان با در نظر گرفتن عوامل تأثیرگذار ترسیم‌شده و میزان قابلیت اطمینان و دسترس‌پذیری شناورها محاسبه و مقایسه می‌شود. نتایج نشان می‌دهد که استفاده از انرژی خورشیدی در کنار دیزل ژنراتور، دارای قابلیت اطمینان بالاتر نسبت به دیگر منابع تولید (996/0) و دارای میزان دسترس‌پذیری بالاتر (998/0)، است و می‌تواند انرژی خورشیدی علاوه­بر تأمین بخشی توان مصرفی شناور، باعث کاهش نگهداری و تعمیرات، کاهش هزینه‌ها، افزایش طول عمر ژنراتورها و افزایش طول مدت دریانوردی شده و تضمین‌کننده تداوم انرژی و باعث بهبود پدافند غیرعامل در حوزه انرژی الکتریسیته شناورهای دریایی باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Reliability and Availability of Energy Production Systems in Marine Ships to Increase Defense Reliability

نویسندگان [English]

  • ali goudarzi amlashi 1
  • Mohammad Rezvani 2
  • mehdi radmehr 3
  • Alireza Ghafouri 3
1 PhD student - Islamic Azad University - Sari Branch
2 Department of Electrical Engineering - Islamic Azad University - Noor
3 Department of Electrical Engineering, Azad University, Sari, Iran
چکیده . [English]

This paper examines the security risks and challenges associated with energy sources for ships, including increasing fuel prices, tightening international pollution laws, and limited space and fuel on board. With the rise of modern naval warfare and technological advances, energy production for vessels has become a strategic priority. This study focuses on identifying threats in electricity generation for ships and investigates the reliability and availability of various energy production systems. Using a Markov model, the study compares different energy production systems by considering their advantages and disadvantages, influential factors, and level of reliability and availability. Results show that the use of solar energy in combination with diesel generators has the highest reliability (0.988) and availability (0.997) compared to other production sources. The study demonstrates that solar energy can be used to meet a portion of the ship's power consumption needs, reduce maintenance and repair costs, extend the life of generators, increase the duration of navigation, ensure continuity of energy supply, and improve passive defense in the field of electrical energy for marine vessels.

کلیدواژه‌ها [English]

  • Ship Power System
  • Availability
  • Reliability
  • Solar Cell

Smiley face

  • Wang, C. Chen, J. Wang, and R. Baldick, "Research on Resilience of Power Systems Under Natural Disasters-A Review," IEEE Trans. on Power Syst., vol. 31, no. 2, pp. 1604-1613, March 2016.
  • غفارپور، رضا؛ علیزاده، محمدایمان، "تبیین مفهوم تاب‌آوری در شبکه برق و ارتباط آن با پدافند غیرعامل"، نشریه علمی شهر تاب‌آور، سال دوم، شماره 1، صفحات 64-51، بهار 1399.
  • دشتی، رضا، تاب‌آوری در سامانه‌های توزیع برق، انتشارات قائم، تهران، ایران،
  • Fisher, "More than 70 Ways to Show Resilience," nature, ?, 2015.
  • I. A. Council, "Critical Infrastructure Resilience Final Report and Recommendations", Washington, DC, USA, 2009.
  • Bhusal, M. Gautam, M. Abdelmalak, and M. Benidris, "Modeling of Natural Disasters and Extreme Events for Power System Resilience Enhancement and Evaluation Methods," In Int. Conf. on Probabilistic Methods Applied to Power Syst. (PMAPS), Liege, Belgium, 2020.
  • غفارپور، رضا؛ جنتی اسکوئی، محمدرضا؛ نجفی روادانق، سجاد؛ اعلمی، حبیب اله، “"تاب‌آوری، ‌پاسخی ‌برای نگرانی‌های موجود در حوزه پدافند غیرعامل شبکه برق،" نشریه علمی پدافند غیرعامل، سال دهم، شماره 1، صفحات 22-1، بهار 1398.
  • پالیزوانمحمد؛ دشتی، رضا، “مقاوم‌سازی زیرساخت‌های شبکه برق با استفاده از روش‌های پدافند غیرعامل،” فصلنامه علمی ترویجی پدافند غیرعامل، سال نهم، شماره 4،صفحات 57-67، 1397.
  • Panteli, D. N. Trakas, P. Mancarella, and N. D. Hatziargyriou, "Power Systems Resilience Assessment: Hardening and Smart Operational Enhancement Strategies," IEEE, vol. 105, no. 7, pp. 1202-1213, July 2017.
  • Panteli and P. Mancarella, "The Grid: Stronger, Bigger, Smarter?: Presenting a Conceptual Framework of Power System Resilience," IEEE, Power Energy Mag. no. 3, vol. 13, pp. 58-66, May 2015.
  • Bie, Y. Lin, G. Li, and F. Li, " Battling the Extreme: A Study on the Power System Resilience," Proc. IEEE, no. 7, vol. 105, pp. 1253-1266, 2017.
  • Bhusal, M. Abdelmalak, M. Kamruzzaman, and M. Benidris, "Power System Resilience: Current Practices,Challenges, and Future Directions," IEEE Access, vol. 8, pp. 18064-18086, January 2020.
  • Lei, C. Chen, Y. Li, and Y. Hou, "Resilient Disaster Recovery Logistics of Distribution Systems: Co-Optimize Service Restoration with Repair Crew and Mobile Power Source Dispatch," IEEE Trans. Smart Grid, vol. 10, no. 6, pp. 6187-6202, Nov. 2019.
  • Lin and Z. Bie, "Tri-level Optimal Hardening Plan for a Resilient Distribution System Considering Reconfiguration and DG Islanding," Appl. Energy, vol. 210, pp. 1266–1279, Jan. 2018.
  • Gholami, T. Shekari, and S. Grijalva, "Proactive Management of Microgrids for Resiliency Enhancement: An Adaptive Robust Approach," IEEE Trans. Sustain. Energy, Vol. 10, no. 1, pp. 470–480, Jan. 2019.
  • Panteli, P. Mancarella, D. N. Trakas, E. Kyriakides, and N. D. Hatziargyriou, "Metrics and Quantification of Operational Infrastructure Resilience in Power Systems," IEEE Trans. Power Syst. vol. 32, no. 6, pp. 4732-4742, Nov. 2017.
  • Hussain, A. Oulis Rousis, I. Konstantelos, G. Strbac, J. Jeon, and H. Kim, "Impact of Uncertainties on Resilient Operation of Microgrids: A Data-driven Approach," IEEE Access, vol. 7, pp. 14924-14937, Jan. 2019.
  • Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie, "Enhancing Power System Resilience through Hierarchical Outage Management in Multi-microgrids," IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2869–2879, 2016.
  • Lei, C. Chen, H. Zhou, and Y. Hou, "Routing and Scheduling of Mobile Power Sources for Distribution System Resilience Enhancement," IEEE Trans. Smart Grid, vol. 10, pp. 5650-5662, Sep. 2019.
  • Kim and Y. Dvorkin, "Enhancing Distribution System Resilience with Mobile Energy Storage and Microgrids," IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 4996-5006, Sep. 2019.
  • Panteli and P. Mancarella , "Modelling and Evaluating the Resilience of Critical Electrical Power Infrastructure to Extreme Weather Events," in IEEE Syst. J. vol. 11, no. 3, pp. 1733-1742, Sep. 2017.
  • Lin, B. Chen, J. Wang, and Z. Bie, "A Combined Repair Crew Dispatch Problem for Resilient Electric and Natural Gas System Considering Reconfiguration and DG Islanding," IEEE Trans. Power Syst. vol. 34, no. 4, pp. 2755-2767, Jul. 2019.
  • Huang, J. Wang, C. Chen, J. Qi, and C. Guo, "Integration of Preventive and Emergency Responses for Power Grid Resilience Enhancement," IEEE Trans. Power Syst. vol. 32, no. 6, pp. 4451-4463, Nov. 2017.
  • Shahidehpour, M. Yan, X. Ai, J. Wen, Z. Li, S. Bahramirad, and A. Paaso, "Enhancing the Transmission Grid Resilience in Ice Storms by Optimal Coordination of Power System Schedule with Pre-Positioning and Routing of Mobile Dc De-Icing Devices," IEEE Trans. Power Syst. vol. 34, no. 4, pp. 2663-2674, Jul. 2019.
  • Dehghanian, S. Aslan, and P. Dehghanian, "Quantifying Power System Resiliency Improvement Using Network Reconfiguration," IEEE 60th Int. Midwest Symp. on Circuits and Syst. pp. 1364-1367, 2017.
  • Ma, B. Chen, and Z. Wang, "Resilience Enhancement Strategy for Distribution Systems under Extreme Weather Events," IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 1442-1451, Mar. 2018.
  • EPRI, "Distribution Grid Resiliency: Undergrounding," Electr. Power Res. Institute, Palo Alto, CA, USA, 2015.
  • Ma, S. Li, Z. Wang, and F. Qiu , "Resilience-oriented Design of Distribution Systems," IEEE Trans. Power Syst. vol. 34, no. 4, pp. 2880-2891, 2019.
  • EPRI, "Distribution Grid Resiliency: Vegetation Management," Electr. Power Res. Institute, Palo Alto, CA, USA, 2015.
  • Mahzarnia, M. P. Moghaddam, P. T. Baboli and P. Siano , "A Review of the Measures to Enhance Power Systems Resilience," In IEEE Syst. J. vol. 14, no. 3, pp. 4059-4070, 2020.
  • Nezamoddini, S. Mousavian, and M. Erol-Kantarci, "A Risk Optimization Model for Enhanced Power Grid Resilience against Physical Attacks," Electric Power Syst. vol. 143, pp. 329-338, Feb. 2017.
  • Shao, M. Shahidehpour, X. Wang, X. Wang, and B. Wang, "Integrated Planning of Electricity and Natural Gas Transportation Systems for Enhancing the Power Grid Resilience," IEEE Trans. Power Syst. vol. 32 no.2, pp. 4418-4429, Nov. 2017.
  • Souto and S. Santoso, "Overhead versus Underground: Designing Power Lines for Resilient, Cost-Effective Distribution Networks under Windstorms," 2020 Resilience Week (RWS), pp. 113-118, 2020.
  • اسکندری، محمد؛ امیدوار، بابک؛ مدیری، مهدی؛ نکوئی، محمدعلی، “"ارائـــه الگـــوی رتبه‌بنـــدی شریان‌های حیاتـــی بـــر اســـاس آنالیـــز اجـــزای اصلـــی،" فصلنامه علمی پژوهشی مدیریت بحران، شماره 16، صفحات 95-77، پاییز 1398.