یافتن مکان و اندازه بهینه منابع تولید پراکنده و خازن در شبکه های توزیع انرژی الکتریکی با تقسیم‌بندی ریزشبکه‌ای با رویکرد پدافند غیرعامل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده فنی مهندسی، واحد یاسوج ، دانشگاه آزاد اسلامی، یاسوج ، ایران

2 استادیار دانشکده فنی مهندسی، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج، ایران

3 استادیار دانشکده فنی مهندسی، دانشگاه فسا، فارس، ایران

چکیده

پدافند غیر­عامل مسئله­ای است که در سالیان اخیر بیشتر مورد توجه قرار گرفته است و دارای این مفهوم که در برخی زمان­ها جوامع بشری با مشکلات طبیعی و غیر طبیعی مواجه می شوند. در صورتی که برای این حوادث از قبل برنامه­های مناسبی در نظر گرفته شده باشد مشکلاتی که در جوامع در اثر این حوادث به وجود می­آید بسیار کمتر بوده و شکی نیست که با توجه به وجود برخی مراکز در شهر­ها برخی نقاط از اهمیت بالایی برخوردار بوده و سعی شده که این نقاط تحت هر شرایطی خودکفا بوده و در نتیجه بتوان از تمامیت این نقاط در مقابل قطعی انرژی الکتریکی محافظت کرد. در این مقاله،  شبکه سراسری برق را به 8 ریز شبکه تقسیم بندی می­کنیم و به هر کدام از این ریزشبکه­ها منابع تولید پراکنده شامل توان اکتیو و راکتیو تخصیص داده شده است و سپس به­گونه‌ای با این 8 ریز شبکه که می‌توانند     به­ صورت پیوسته و نیز جزیره‌ای کار کنند رفتار شود که در صورتی که اتفاقی برای هر کدام از این شبکه‌ها در زمان حوادث رخ دهد و به هر دلیلی از شبکه اصلی قطع شوند این شبکه­ها بتوانند به­ صورت جزیره‌ای کار کرده و پاسخگوی نیاز بارهای هر قسمت باشند. در ادامه با استفاده از الگوریتم بهینه­ سازی وال یا نهنگ به جایابی مکان و اندازه منابع تولید پراکنده و نیز بانک­های خازنی پرداخته می­شود. با استفاده از این روش می­توان نیاز شبکه را به­صورت محلی پاسخ داده و به همین دلیل از تلفات زیاد توان و در نتیجه افت ولتاژ جلوگیری کرد.  برای بررسی نقش بهینه‌سازی در سناریو اول تعداد واحدهای منابع تولید پراکنده برابر 47 واحد و حداکثر تعداد بانک خازنی برابر با 38 واحد در نظر گرفته شده است. در اثر جایگذاری بهینه این واحدهای تولید توان در جاهای مناسب تلفاتی که قبل از بهینه‌سازی برابر با  227 کیلووات بوده بعد از بهینه‌سازی کاهش قابل توجهی داشته و به 122 کیلووات کاهش یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Finding the Optimal Size and Placement for the Sources of Distributed Generation (DG) of and Capacitors in the Distribution Networks by Microgrid Segmentation with a Passive Defense Approach

نویسندگان [English]

  • Mahmoud Zadehbagheri 1
  • Alireza Abassi 2
  • Mohammadjavad Kiani 3
1 Department of Electrical Engineering, Islamic Azad university of Yasooj
2 Department of Electrical, Faculty of Engineering, Fasa University, Fasa, Iran
3 Department of electrical
چکیده [English]

Passive defense is an issue that has received more attention in recent years. The concept of passive defense is that sometimes human societies face natural and unnatural problems. If there are appropriate plans for these events, the problems that arise in the communities as a result of these events are much fewer. There is no doubt that due to the existence of some centers in the cities, some places are of high importance. And it has been tried that these points are             self-sufficient under any conditions, and as a result, these points can be protected against electric power outages. In this article, we divide the national electricity network into 8 micro-grids. Each of these micro-grids is allocated scattered production sources including active and reactive power, and then in such a way that these 8 micro-grids can be, continuously, and also act as an island, so that if something happens to any of these networks during incidents and they are disconnected from the main network for any reason, these networks can work as an island and respond to the needs of the loads of each part. In the following, the location and size of scattered production sources and capacitor banks are discussed using the whale optimization algorithm. By using this method, the network needs can be answered locally, and for this reason, high power losses and voltage drop can be avoided. To investigate the role of optimization in the first scenario, the number of units of distributed generation resources is 47 units and the maximum number of capacitor banks is 38 units. As a result of the optimal placement of these power generation units in the right places, the losses, which were equal to 227 kW before the optimization, have significantly decreased after the optimization and have decreased to 122 kW.

کلیدواژه‌ها [English]

  • Distributed Generation Resources
  • Standard 69 Bus Network
  • Passive Defense
  • Optimization
  • Capacitor Bank
  • Microgrid

Smiley face

[1]   R. Dashti, , "'Passive defense in electrical energy distribution systems'", Passive Defense Quarterly, fourth year, no. 3, pp. 1-11, 2013. (In persian)
[2]   R. Ghafarpour, "Passive defense in the planning of electric power distribution systems", Tehran, Imam Hossein University, 2017. ( In persian)
[3]   X. Chen, et al., "Reinforcement learning for selective key applications in power systems: Recent advances and future challenges," IEEE Transactions on Smart Grid 2022.
[4]   A. Asrari, "Optimal distribution network reconfiguration using dynamic fuzzy based genetic algorithm. in Innovations in Technology Conference (InnoTek)," 2014 IEEE, 2014.
 
[5]   A. Gopi, "Distributed generation for line loss reduction in radial distribution system," In Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM), 2012 International Conference on, IEEE, pp. 29-32, December 2017.
[6]   M. A. Kashem, A. D. Le, M. Negnevitsky, and G. Ledwich, "Distributed generation for minimization of power losses in distribution systems," In Power Engineering Society General Meeting, 2006. IEEE, pp. 8-pp IEEE, June 2016.
[7]   M. Palizvan and R. Dashti, "Enhancing Security of Power Transmission Systems Against Destructive Attacks in the Field of the Passive Defense " Passive Defense Quarterly, vol. 9, no. 3, pp. 11-19, 2018. (In persian)
[8]   M. Kowsalya, "Optimal Distributed Generation and capacitor placement in power distribution networks for power loss minimization," In Advances in Electrical Engineering (ICAEE), International Conference on, IEEE.2014. pp. 1-6, January 2014.
[9]   J. P. Lopes, N. Hatziargyriou, J. Mutale, P. Djapic, and N. Jenkins, "Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities," Electric power systems research, vol. 77(9), pp. 1189-1203, (2017.
[10] C. Mondal, "Distributed Generation Allocation for Power Loss Minimization and Voltage Improvement of Radial Distribution Systems Using Different ution Systems Using Different ution Systems Using Different Techniques," Techniques, 2017.
[11] S. E. Souza, "Specialized genetic algorithm of Chu-Beasley applied to the Distribution System Reconfiguration problem considering several demand scenarios," in PowerTech, 2015 IEEE Eindhoven, IEEE, 2015.
[12] D. F. Teshome and K. L. Lian, "An improved distribution system reconfiguration using hybrid GA with PSO," 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), 2015, pp. 77-82, doi: 10.1109/EEEIC.2015.7165386.
[13] C. Wang and M. H.Nehrir, "Analytical approaches for optimal placement of distributed generation sources in power systems," IEEE Transactions on Power systems, vol. 19(4), pp. 2068-2076, 2016.
[14] S. A. Arefifar, I. Yasser Abdel-Rady Mohamed, and Tarek HM El-Fouly, "Supply-adequacy-based optimal construction of microgrids in smart distribution systems,." IEEE transactions on smart grid 3.3, pp. 1491-1502, 2012.
[15] Eid, Ahmad, and Salah Kamel, "Optimal Allocation of Multiple Distributed Generations in radial Distribution Systems Using Levy Flight Distribution Algorithm." 2021 IEEE International Conference on Automation Congress of the Chilean Association of Automatic Control (ICA-ACCA). IEEE, 2021.‏
[16] Sambaiah, Kola Sampangi and T. Jayabarathi, "Optimal reconfiguration and renewable distributed generation allocation in electric distribution systems." International Journal of Ambient Energy 42.9, pp. 1018-1031, 2021.
[17] Mujeeb, Asad, and Wang Peng, "Long Run Incremental Cost (LRIC) Distribution Network Pricing in UK, advising China's Distribution Network," arXiv preprint arXiv:2205.09946 2022.‏
[18] Khan, Riaz, et al. "Energy Sustainability–Survey on Technology and Control of Microgrid, Smart Grid and Virtual Power Plant." IEEE Access 9 (2021): 104663-104694.‏
[19] Chakraborty, Sanjoy, et al. "A novel enhanced whale optimization algorithm (WOA) for global optimization." Computers & Industrial Engineering 153 (2021): 107086.‏
[20] K. H. Kim, Y. J. Lee, S. B. Rhee, S. K. Lee, and S. K. You, "Dispersed generator placement using fuzzy-GA in distribution systems. In Power Engineering Society Summer Meeting, IEEE, vol. 3, pp. 1148-1153, 2016.
[21] B.        Jedi, R. Ghafarpour, and A. M. Ranjbar,  "Improving passive defense indicators using optimal planning Renewable energy sources in smart electricity distribution networks," Journal of the Iranian Electrical and Electronics Engineering Association - 15th year - 1st issue - Spring 2017. (In persian)