ایجاد اخلال در سیستم موقعیت‌یابی DSMAC در موشک‌های کروز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشگاه صنعتی مالک اشتر، تهران، ایران

2 دانشجوی کارشناسی ارشد دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

در این مقاله، سیستم موقعیت‌یابی DSMAC موشک کروز بر پایه همبستگی شبیه‌سازی‌شده است. سپس به‌منظور ایجاد اخلال و تحلیل میزان اثرات هر اخلال در عملکرد این سیستم موقعیت‌یابی، از مواردی همچون تغییر قدرت تفکیک تصاویر، روشنایی، پوشش محیطی، زاویه دید و متغیرهای تصادفی دیگر مانند تغییرات مصنوعی (دود) بهره گرفته شد. جهت مشخص شدن منطقه اجرای عملیات پدافند علیه این سیستم، با درنظرگرفتن خطای سیستم ناوبری اینرسی موشک و احتمال خطای دایره‌ای (CEP)، اثبات‌شده است که محل انجام DSMAC به شعاع سه تا پنج کیلومتری از هدف می‌باشد. با تحلیل نتایج به‌دست‌آمده، نشان داده‌شده است که نواحی با تعداد پیکسل‌های مشکی بیشتر مانند مناطق جنگلی، مناطق نامطلوب برای انجام DSMAC می‌باشد. علاوه بر این، با استفاده از جمینگ در سیستم ارتفاع‌سنج موشک کروز، می‌توان دقت فرآیند ارتفاع سنجی موشک را پایین آورد تا سیستم موقعیت‌یابی تصویری به‌کلی دچار اختلال شود. همچنین هر چه اندازه و مساحت کل تغییرات مصنوعی (دود) بزرگ‌تر باشد و رنگ تغییرات، متناسب با پس‌زمینه تصویر باشد، ایجاد اختلال و پدافند در مقابل سیستم DSMAC امکان‌پذیر خواهد بود. در نهایت، با ارایه سناریوهای عملیاتی، پدافند در برابر سیستم موقعیت‌یابی DSMAC موشک کروز تحقق بخشیده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Disruption in the DSMAC Positioning System in Cruise Missiles

نویسندگان [English]

  • Reza Fatemi mofrad 1
  • Naser Jangi 2
1 Malek Ashtar University of Technology / Faculty of Electrical and Computer Engineering
2 Malek Ashtar University of Technology / Faculty of Electrical and Computer Engineering
چکیده [English]

In this paper, the cruise missile’s DSMAC positioning system is simulated based on correlation. Then, in order to create a disturbance and analyze the effects of each disturbance in the performance of this positioning system, items such as changing image resolution, brightness, ambient coverage, viewing angle and other random variables such as artificial changes (smoke) were used. In order to determine the area of defense operation against this system, considering the missile inertial navigation system error and the possibility of circular error (CEP), it has been proved that the DSMAC location is within a radius of three to five kilometers from the target. By analyzing the obtained results, it has been shown that the areas with more black pixels, such as forest areas, are undesirable areas for DSMAC. In addition, by using jamming in the cruise missile altimeter system, the accuracy of the missile altimeter process can be reduced so that the image positioning system is completely disrupted. Also, the larger the size and area of the total artificial changes (smoke) and the color of the changes, in proportion to the background of the image, the disruption and defense against the DSMAC system will be possible. Finally, by providing operational scenarios, the defense against the cruise missile DSMAC positioning system has been realized.

کلیدواژه‌ها [English]

  • Passive Defense
  • Image Matching
  • DSMAC Positioning System
  • Cruise Missile
  • [1] Kou, B. Li, and D. Tang, “An INS Error Estimation Method Based on Passive Observation to Single Feature Target for Cruise Missile,” Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference, pp. 2488-2493, 2014.
  • [2] M. Gormley, “Dealing With The Threat of Cruise Missiles,” Routledge, 2013.
  • [3] Kuchta, “Technology Advances in Cruise Missiles,” Annual Meeting and Technical Display, vol. 16, p. 937, 1981.
  • [4] Waldemark, M. Millberg, T. Lindblad, and K. Waldemark, “Image Analysis for Airborne Reconnaissance and Missile Applications,” Pattern Recognition Letters, vol. 21, pp. 239–251, 2000.
  • [5] Zhang, L. Shen, and W. Chang, “Acquisition Probability Estimation Model based on Discrete Fractional Brownian Random Field,” In Location Services and Navigation Technologies, vol. 5084, pp. 109–116, 2003.
  • [6] B. Irani and J. P. Christ, “Image Processing for Tomahawk Scene Matching,” Johns Hopkins APL Technical Digest, 15, 3, pp. 250–264, 1994.
  • [7] Qiao, X. Xie, L. Shi, and D. Li, “The Application of Spatial Scene Matching Based on Surf in Cruise Missile Terminal Guidance,” IEEE International Conference on Measuring Technology and Mechatronics Automation, 3, pp. 790-793, 2010.
  • [8] Li-guang and J. Zhan-rong, “Analysis and Simulation for Performance of Jammer Fixed in Cruise Missile,” Journal of System Simulation, 3, pp. 39–45, 2008.
  • [9] Liu, W. Jiang, and T. Liu, “Penetration Efficiency Evaluation of Missile with Jammer,” Applied Mechanics and Materials, 719, pp. 369-375, 2015.
  • [10] M. Gormley, “Missile Defence Myopia: Lessons from the Iraq War,” Survival, 45, pp. 61–86, 2003.
  • [11] C. Otto, G. Prasicek, and J. Blothe, and L. Schrott, “GIS Applications in Geomorphology,” In Comprehensive Geographic Information Systems: Elsevier, pp. 81–111, 2018.
  • [12] Sheikh, S. Khan, and M. J. Shah, “Feature-based Georegistration of Aerial Images,” vol. 4, 2004.
  • [13] D. Shere and J. W. Wingate, “Allocation of Resources to Offensive Strategic Weapon Systems,” Naval Research Logistics Quarterly, 23, pp. 85–93, 1976.
  • [14] Wiseman, “Information Systems as Competitive Weapons,” Dow Jones-Irwin Homewood. IL, 1985.
  • [15] R. Carr and J. S. Sobek, “Digital Scene Matching Area Correlator (DSMAC),” In Image Processing For Missile Guidance, 238, pp. 36–41, 1980.
  • [16] Wu, Q. Du, Y. Wang, and Y. Yang, “Supervised Sub-Pixel Mapping for Change Detection from Remotely Sensed Images with Different Resolutions,” MDPI remote sensing, 9, pp. 284–291, 2017.
  • [17] Ekutekin, “Navigation and Control Studies on Cruise Missiles,” Ph.D. Thesis, Middle East Technical University, 2007.
  • [18] Kou, B. Li, and D. Tang, “An INS Error Estimation Method based on Passive Observation to Single Feature Target for Cruise Missile,” Navigation and Control Conference, pp. 2488–2493, 2014.

  [19]          P. L. Nova, “GPS Position Accuracy Measures,” Positioning Leadership, pp. 1–6, 2003.

  • [20] Kopp, “The Strategic Cruise Missile,” Air Power Australia, Part1, pp. 58–62, 2005.
  • [21] M. Sazdar, J. Mazloum, S. M. Shokrolahi, and S. Sharbati, “Improvement of Buildings Detection Based on Adaptive Thresholding in Satellite Images,” Adv. Defence Sci. & Tech, 2, pp. 242–297, 2018.               (In Persian)
  • [22] B-N. Vo and W-K. Ma, “The Gaussian Mixture Probability Hypothesis Density Filter,” IEEE Transactions on Signal Processing, 54, pp. 4091–4104, 2006.
  • [23] Sharifi and M. Ghasemzadeh, “Design and Evaluation of an Expert System based on Histogram Shape for Image Thresholding,” in 2015 9th International Conference on E-Commerce in Developing Countries: With focus on E-Business (ECDC)., pp. 1–5, 2015.
  • [24] Otsu, “A Threshold Selection Method from Gray-level Histograms,” IEEE Transactions on Systems, Man, and Cybernetics, 9, pp. 62–66, 1979.