نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی کارشناسی ارشد مهندسی عمران گرایش سازه دانشکده پدافندغیرعامل دانشگاه جامع امام حسین(ع)، تهران، ایران
2 استادیار مهندسی عمران دانشکده پدافندغیرعامل دانشگاه جامع امام حسین(ع)، تهران، ایران
چکیده .
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Today, tunnels are one of the main vital arteries for a city, which are developing significantly. The development of today's societies has caused the need for tunnels in various sectors, including urban public transportation, intercity transportation, and water and sewage collection and transmission networks, etc. It goes without saying that for underground structures such as tunnels, the existence of faults and consequently earthquakes are serious threats among natural hazards. Although tunnels should not be located near active faults, sometimes passing through them is unavoidable. Sometimes, after the construction of the tunnel, the existence of the fault is known. In such cases, the deformation caused by the fault is considered a big concern and has a significant effect on the behavior of the tunnels. Meanwhile, due to the fact that most urban shallow tunnels are built in loose ground, the necessity of studying the behavior of tunnels and ensuring the safety of these structures against failure is of great importance. The advantage of numerical methods, in this research, the effect of different parameters such as the thickness of the piece, the depth of the tunnel placement and the fault angle on the behavior of piece tunnels has been investigated using FLAC 3D software. The main goal of the research was to know the possible failure mechanism of segmental tunnels due to faulting. In this research, 24 numerical models were built to understand the behavior of segmental tunnels under the effect of reverse faulting. The validation of this numerical modeling is with the physical model of Kiani et al. The ways to improve the performance of segmental tunnels when faced with reverse fault movement is to increase the rigidity of the tunnel. In this research, the effect of the depth of the tunnel placement due to the reverse fault was also investigated. It was observed that increasing the depth of the tunnel placement when facing reverse faulting leads to a decrease in the deformation of the tunnel diameter. Also, the effect of changing the fault angle for the tunnel was investigated. Increasing the angle of the fault causes the change of places created on the ground surface and the displacement of the tunnel roof to decrease.
کلیدواژهها [English]