نهان ‏نگاری در صوت مبتنی بر الگوریتم تبدیل موجک درخت صفر درج‏شده

نوع مقاله : ترویجی

نویسندگان

استادیار دانشگاه جامع امام حسین (ع)، تهران، ایران

چکیده .

نهان‏نگاری در صوت همانند نهان‏نگاری در رسانه‏های دیگر (تصویر، ویدئو و ...)، از اهمیت ویژه‏ای برخوردار است. در این مقاله نهان‏نگاری در صوت مبتنی بر الگوریتم تبدیل موجک درخت صفر درج‏شده ارائه شده است. ارتقاء مقاومت در برابر نویز سفید و نویز افزایشی با کم‏ترین SNR یکی از موضوعات مهم در نهان‏نگاری است. الگوریتم پیشنهادی، در برابر نویز سفید نرمال بیشتر از نویز یکنواخت مقاوم بوده ودر برابر SNR‏های بالاتر از 10db نرخ بیت خطای کم‏تر از 1 بیت دارد. در صورت حمله به الگوریتم پیشنهادی، با توجه به BER به‏دست آمده، سیگنال مخفی کاملاً تخریب می‏شود. همچنین روش پیشنهادی در برابر اضافه‏کردن نویز افزایشی مقاوم است. الگوریتم پیشنهادی در حوزه فرکانس با مقیاس فاصله کپستروم و فایل‏های صوتی به فرم موزیک با تُن (بلندی) ملایم، کم‏ترین تغییرات را در معیار همواری صوت دارد و افزایش پیام مخفی تاثیر چندانی در ایجاد اغتشاش در حوزه فرکانس ندارد. الگوریتم پیشنهاد‏شده طیف فرکانسی، سیگنال صوتی را چندان تغییر نمی‏دهد و همچنین از خاصیت سطح آستانه شنوایی پیروی می‏کند و موزیک تن بالا با گفتار مرد دارای بهترین نتایج می‏باشند بنابراین از هر جهت مساعد با ساختار طیف بارک می‏باشند. همچنین الگوریتم پیشنهادی نتایج مطلوبی در حوزه زمان دارد. کم‏ترین SNR مربوط به موزیک تن بالا با گفتار زن می‏باشد که دارای SNRی در حدودdb  13 می‏باشد. با توجه به نتایج حاصل‏شده، با انتخاب سیگنال صوتی با گفتار زن بدترین حالت درج پیام مخفی را خواهیم داشت. زیرا در سیگنال گفتار زن همواری خاصی محسوس است. بنابراین با درج پیام مخفی در این نوع سیگنال صوتی، تا حدودی این فرم یکنواختی از بین خواهد رفت و با توجه به مقایسه‏‏شدن مولفه به مولفه دو سیگنال اصلی و سیگنال حاوی پیام مخفی، میزان معیار CZD افزایش می‏یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Steganography Audio Based on Zero-Tree Wavelet Transform Algorithm

نویسندگان [English]

  • ٍEsfahani Reza
  • A. R. Matinfar
Scientific Department of Communication
چکیده . [English]

Audio steganography is very important, equally steganography in other media (image, video, etc.). In this paper is presented steganography of audio based on embedded zero-tree waveleten transform algorithm. Improving the resistance against white noise and additive noise with the lowest SNR is one of the important topics in steganography. The proposed algorithm is more robust against normal white noise than uniform noise and has a bit error rate of less than 1 bit against SNRs higher than 10db. According to the obtained BER, if the proposed algorithm is attacked, the hidden signal is lost completel. Also, the proposed method is resistant against additive noise. The proposed algorithm has the least changes in the sound smoothness criterion in frequency domain with Capstrom distance scale and audio files in the form of music with soft tone (loudness), and the increase of secret message does not have much effect on creating disturbances in the frequency domain. The proposed algorithm of the frequency spectrum does not change the audio signal much, and it also follows the property of the hearing threshold level, and high-pitched music with male speech has the best results, so it is favorable to the spectrum structure of Bark. Also, the proposed algorithm has favorable results in the time domain. The lowest SNR is related to high-pitched music with female speech, which has an SNR of about 13db. According to the obtained results, we will have the worst case of embedding a secret message by choosing the audio signal with female speech. Because there is a certain smoothness in the fmale speech signal. Therefore, this uniform state will be lost to some extent by embedding a secret message in this type of audio signal, and the CZD criterion will increase according to the component-by-component comparison of the two main signals and the signal containing the secret message.
 
 
 

کلیدواژه‌ها [English]

  • Embedded Zero Tree Wavelet Transform (EZW)
  • White Noise
  • Additive Error
  • BSD and MBSD Criteria
  • CDM Kapstrom Distance Scale
  • ISD and COSH Distance
  • Short Time Radon Transform STFRT
  • SNR and CZD

Smiley face

[1] C. Kratzer, J. Dittmann, T. Vogel and R. Hillert, "Design and evaluation of steganography for voice-over-IP," 2006 IEEE International Symposium on Circuits and Systems, Kos, Greece, p. 4, 2006.                                    doi: 10.1109/ISCAS.2006.1693105.
[2] L. Boney, A. H. Tewfik, and K. N. Hamdy, "Digital watermarks for audio signals," Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems, Hiroshima, Japan, pp. 473-480,1996.         doi: 10.1109/MMCS.1996.535015.
[3] Cvejic, Nedeljko, “Algorithms For Audio Watermarking  and Steganography, 2004.
[4] S. S. Agaian, D. Akopian, O. Caglayan, and S. A. D'Souza, "Lossless Adaptive Digital Audio Steganography," Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005., Pacific Grove, CA, USA, pp. 903-906, 2005. doi: 10.1109/ACSSC.2005.1599886.
[5] W. C. CHU, “Speech Coding Algorithms-Foundation and Evaluation of Standatadized Coder, 2003.
[6] J. Herre and S. Dick, “Psychoacoustic Models for Perceptual Audio Coding—A Tutorial Review,” Applied Sciences, vol. 9, no. 14, p. 2854, Jul. 2019, doi: 10.3390/app9142854.
[7] J. M. Shapiro, "Embedded image coding using zerotrees of wavelet coefficients," in IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3445-3462, Dec. 1993, doi: 10.1109/78.258085.
[8] V. Ralph Algazi and Robert R. Estes Jr. "Analysis-based coding of image transform and subband coefficients", Proc. SPIE 2564, Applications of Digital Image Processing XVIII, 22 August 1995.
[9] K. L. Narasihimhaprasad, M. V. Nagabhushanam, V. V. Satyanarayana Tallapragada, and J. Krishna Sunkara, "Embedded Zero-Tree Wavelet Coding with Selective Decomposition Bands," 2019 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, pp. 0445-0449, 2019. doi: 10.1109/ICCSP.2019.8698062.
[10] J. Antonio Alvarez-Cedillo, T. Alvarez-Sanchez, M. Aguilar-Fernandez, and J. Sandoval-Gutierrez, ‘Many-Core Algorithm of the Embedded Zerotree Wavelet Encoder’, Coding Theory. IntechOpen, Mar. 11, 2020. doi: 10.5772/intechopen.89300.
[11] Rekik, Siwar et al. “Speech steganography using wavelet and Fourier transforms.” EURASIP Journal on Audio, Speech, and Music Processing, pp. 1-14, 2012.
[12] H. Inoue, A. Miyazaki, A. Yamamoto, and T. Katsura, "A digital watermark based on the wavelet transform and its robustness on image compression," Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269), Chicago, IL, USA, vol. 2, pp.     391-395, 1998. doi: 10.1109/ICIP.1998.723388.
[13] Z. Xu, K. Wang, and X. -h. Qiao, "Digital Audio Watermarking Algorithm Based on Quantizing Coefficients," 2006 International Conference on Intelligent Information Hiding and Multimedia, Pasadena, CA, USA, 2006, pp. 41-46, doi: 10.1109/IIH-MSP.2006.265115.
[14] Xiang, Shijun, Hyoung Joong Kim, and Jiwu Huang. "Audio watermarking robust against time-scale modification and MP3 compression." Signal Processing 88.10, pp. 2372-2387, 2008.
[15] M. Baziyad, et al., "Maximizing embedding capacity for speech steganography: a segment-growing approach," Multimedia Tools and Applications, vol. 80, pp. 24469-24490, 2021.
[16] F. J. Farsana and K. Gopakumar, "Speech encryption algorithm based on nonorthogonal quantum state with hyperchaotic keystreams." Advances in Mathematical Physics 2020, pp. 1-12, 2020.
[17] A. Kuznetsov, et al., "Direct Spread Spectrum Technology for Data Hiding in Audio,." Sensors 22.9, 3115, 2022.