[1] WHO 2014. Burden of disease from ambient and household air pollution.
[2] D. Loomis, Y. Grosse, B. Lauby-Secretan, F. El Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, R. Baan, H. Mattock, and K. Straif, “The carcinogenicity of outdoor air pollution,” The lancet oncology, vol. 14(13), pp. 1262-1263, 2013.
[3] K. M. Nadafi and M. Natiqpour, “Examining Jurjani's point of view on air pollution and water purification in the book of Kharazmshahi's storage,” Journal of Medical Ethics and History, vol. 3, pp. 28-20, 2010. (In Persian)
[4] WHO., “Ambient (outdoor) air quality and health,” 2015. Available from:
http://www.who. int/mediacentre/factsheets/fs313/en./
[5] Air Quality Control Company 2019. Annual Report of Tehran Air Quality in 2016: QM97/02/01(U) May 2017(In Persian)
[6] K. Ram and M. M. Sarin, “Atmospheric 210Pb, 210Po and 210Po/210Pb activity ratio in urban aerosols: temporal variability and impact of biomass burning emission,” International meteorological institute in Stockholm, 17513, 2012.
[7] Longbo et al., “Monitoring of atmospheric radionuclides from the Fukushima nuclear accident and assessing their impact on Xi’an, China,” Atmospheric Science, vol. 58, no. 13, pp. 1585-1591, 2013.
[8] T. Christoudias, Y. Proestos, and J. Lelieveld, “Atmospheric Dispersion of Radioactivity from Nuclear Power Plant Accidents: Global Assessment and Case Study for the Eastern Mediterranean and Middle East,” Energies, vol. 7, pp. 8338-8354, 2014.
[9] M. Pham, P. Povinec, H. Nies, and H. Betti, “Dry and wet deposition of 7Be, 210Pb and 137Cs in Monaco air during 1998-2010: Seasonal variations of deposition fluxes,” Journal of Environmental Radioactivity, vol. 120, pp. 45-57, 2013.
[10] H. Malá, P. Rulík, V. Bečková, J. Mihalík, and M. Slezáková, “Particle size distribution of radioactive aerosols after the Fukushima and the Chernobyl accidents [2013],” Journal of Environmental Radioactivity, vol. 126, pp. 92-98, 2015.
[12] W. F. Raputa, “Numerical analysis of aerosol radionuclide fall-outs from accident outbursts into the atmosphere,” Bull. Comp. Center., pp. 1–8, Nov. 2013.
[13] M.
Gonze, P.
Renaud, I.
Korsakissok, H.
Kato, T. G.
Hinton, C.
Mourlon, and M.
Simon-Cornu, “Ssessment of Dry and Wet Atmospheric Deposits of Radioactive Aerosols: Application to Fukushima Radiocaesium Fallout,” Environ. Sci. Technol., vol. 48(19), pp. 11268–11276, 2014.
[14] M. Kurdi and M. Saadati, “Nuclear defense and its effect on reducing contamination of radioactive substances in farm animals and livestock products,” Passive defense magazine, vol. 12(1), pp. 21-34, 2022. (In Persian)
[15] Y. Oura, M. Ebihara, H. Tsuruta, T. Nakajima, T. Ohara, M. Ishimoto, H. Sawahata, Y. Katsumura, and W. Nittae, “A Database of Hourly Atmospheric Concentrations of Radiocesium (134Cs and 137Cs) in Suspended Particulate Matter Collected in March 2011 at 99 Air Pollution Monitoring Stations in Eastern Japan,” Journal of Nuclear and Radiochemical Sciences, vol. 15(2), pp. 1-12, 2015.
[16] A. E. Ali, “Studies on the effect of atmospheric radioactive materials on human being in different places of Egypt,” International Journal of Research in Applied, Natural and Social Sciences ISSN (E), 2321-8851; ISSN (P): 2347-4580, vol. 4(3), pp. 63-66, 2016.
[17] R. L. Lozano, E. G. San Miguel, and J. P. Bolívar, “Assessment of the influence of in situ 210Bi in the calculation of in situ 210Po in air aerosols: Implications on residence time calculations using 210Po/210Pb activity ratios,” Journal of Geophysical Research, vol. 116, 2011.
[18] M. Grundela and J. Porstendorfer, “Differences between the activity size distributions of the different natural radionuclide aerosols in outdoor air Atmospheric Environment,” vol. 38, pp. 3723–3728, 2004.
[19] J.
Crawford, S.
Chambers, D.
Cohen, A.
Williams, A.
Griffiths, and E.
Stelcer, “Assessing the impact of atmospheric stability on locally and remotely sourced aerosols at Richmond, Australia,” using Radon-222,
Atmospheric Environment, vol.
127, pp. 107–117, 2016.
[20] H. Mala, L. Tomasek, P. Rulik, V. Beckova, and J. Hulka, “Size distribution of aerosol particles produced during mining and processing uranium ore,
Journal of Environmental Radioactivity, vol.
157, pp. 97–101, 2016.
[21] L. L. Su, G. Q. Liu, M. X. Ding, J. P. Feng, H. Zhang, “A study of 210Po in atmospheric aerosol of Shenzhen and its committed effective dose,” China, Environ. Sci., vol. 37, pp. 2025–2028, 2017. (Article in Chinese with English abstract)
[22] J. Ouyang, G. Yang, L. Ma, M. Luo, and D. Xu, “Development and Application of Fingerprints of Radioactive Cesium-Plutonium-Uranium Isotopes as Tracers in Air Pollution,” Progress in Chemistry, vol. 29(12), pp. 1446-1461, 2017.
[23] J. Ouyang, L. J. Song, L. L. Ma, M. Luo, Y. Shao, X. X. Dai, G. S. Yang, Y. G. Yang, M. Y. Luo, and D. D. Xu, “Temporal variations, sources and tracer significance of Polonium-210 in the metropolitan atmosphere of Beijing,” China, Atmospheric Environment, vol. 193, pp. 214-223, 2018.
[24] M. Długosz-Lisiecka, “Excess of 210-polonium activity in the surface urban atmosphere,” Part (1) fluctuation of the 210Po excess in the air. Environmental Science: Processes & Impacts, vol. 17(2), pp. 458-464, 2015.
[25] P. Amini and A. Emami, “Report of one hundred thousand sheets of Tehran Plain,” Geological and Mineral Exploration Organization of Iran, 2004.(In Persian)
[26] B. Oroji, “Risk assessment radioactive aerosols with determination residence times in the atmosphere′s Tehran,” Iran, Ph.D. Thesis. Malayer University, p. 246 , 2019.
[27] C. Papastefanou, “Radioactive Aerosols,” ELSEVIER. 187 p. 2008.
[28] C. Papastefanou, “Beryllium-7 Aerosols in Ambient Air,” Papastefanou, Aerosol and Air Quality Research, vol. 9(2), pp. 187-197, 2009.
[30] H. E. Moore, S. E. Poet, and E. A. Martell, “Tropospheric aerosol residence times indicated by radon and radondaughter concentrations,” In: Adams, J.A.S., Lowder,W.M., Gessel, T.F. (Eds.), Natural Radiation Environment II. Technical Information Center/U.S. Department of Energy, Washington, DC, CONF-720805-P2, pp. 775–786, 1972.
[32] L. Lehmann and A.Sittkus, “Bestimmung von Aerosolverweilzeiten aus den RaD und RaF Gehalt der atmospharischen Luft und des Niederschlages,” Naturwissenschaft, vol. 46, pp. 9–10, 1959.
[33] D. H. Peirson, R. S. Cambray, and G. S. Spicer, “Lead-210 and polonium-210 in the atmosphere,” Tellus 18, pp. 427–433, 1966.
[34] C. Papastefanou and E. A. Bondietti, “Mean residence times of atmospheric aerosols in the boundary layer as determined from 210Bi/210Pb activity ratios,” J. Aerosol Sci., vol. 22, pp. 927–931, 1991.
[35] S. E. Poet, H. E. Moore, and E. A. Martell, “Lead-210, bismuth-210 and polonium-210 in the atmosphere: Accurate ratio measurement and application to aerosol residence time determination,” J. Geophys. Res., vol. 77(33), pp. 6515–6527, 1972.
[36] C. W. Francis, G. Chesters, and L. A. Haskin, “Determination of 210Pb mean residence time in the atmosphere,” Environ. Sci. Technol., vol. 4 (7), pp. 586–589, 1970.
[37] N. A. Marley, O. S. Gaffney, P. J. Drayton, M. M. Cunningham, K. A. Orlandini, and R. Paode, “Measurement of 210Pb, 210Po and 210Bi in size-fractionated atmospheric aerosols: An estimate of fine-aerosol residence times,” Aerosol Sci. Technol., vol. 32, pp. 569–583, 2000.