[1] M. Gomez-Barrero, C. Rathgeb, G. Li, R. Ramachandra, J. Galbally, and C. Busch, “Multi-biometric template protection based on bloom filters,” Information Fusion, vol. 42, no. 1, pp. 37-50, 2018.##
[2] P. H. Pisani, N. Poh, A. C. De Carvalho, and A. C. Lorena, “Score normalization applied to adaptive biometric systems,” Computers & Security, vol. 70, no. 1, pp. 565-580, 2017.##
[3] S. Wang and A. W. Liew, “Physiological and behavioral lip biometrics: A comprehensive study of their discriminative power,” Pattern Recognition, vol. 45, no. 9, pp. 3328-3335, 2012.##
[4] U. Saeed, “Eye movements during scene understanding for biometric identification,” Pattern Recognition Letters, vol. 82, no. 1, pp. 190-195, 2016.##
[5] K. O. Bailey, J. S. Okolica, and G. L. Peterson, “User identification and authentication using multi-modal behavioral biometrics,” Computers & Security, vol. 43, no. 1, pp. 77-89, 2014.##
[6] P. Connor and A. Ross, “Biometric recognition by gait: A survey of modalities and features, Computer Vision and Image A survey on gait recognition,” ACM Computing Surveys, vol. 51, no. 5, pp. 1–35, 2018.##
[7] C. Wan, L. Wang, and V. V. Phoha, “survey on gait recognition,” ACM Computing Surveys, vol. 51, no. 5, pp. 1–35, 2018.##
[8] Z. Wu, Y. Huang, L. Wang, X. Wang, and T. Tan, “A comprehensive study on cross-view gait based human identification with deep CNNs,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 02, pp. 209–226, 2017.##
[9] I. Rida, N. Noor Almaadeed, and S. Al-ma'adeed, “Robust gait recognition: a comprehensive survey,” IET Biometrics journal, vol. 8, Issue 1, pp. 14 - 28, 2019.##
[10] Y. Hirose, K. Nakamura, N. Nitta, and N. Babaguchi, “Anonymization of Gait Silhouette Video by Perturbing Its Phase and Shape Components,” APSIPA ASC Conference, Lanzhou, China, pp. 1679-1685, 2019.##
[11] B. Jawed, O. O. Khalifa, and S. S. Newaj Bhuiyan, “Human Gait Recognition System,” 2018 7th International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, pp. 89-92, 2018.##
[12] K. Bashir, T. Xiang, and S. Gong, “Gait recognition using gait entropy image,” in Proc. 3rd Int. Conf. Crime Detect. Prevention, pp. 1–6, 2009.##
[13] X. Yang, Y. Zhou, T. Zhang, G. Shu, and J. Yang, “Gait recognition based on dynamic region analysis,” Signal Process, vol. 88, pp. 2350–2356, 2008.##
[14] E. Zhang, Y. Zhao, and W. Xiong, “Active energy image plus 2dlpp for gait recognition,” Signal Process, vol. 90, no. 7, pp. 2295–2302, 2010.##
[15] K. Bashir, T. Xiang, and S. Gong, “Gait recognition without subject cooperation,” Pattern Recognit. Lett., vol. 31, no. 13, pp. 2052–2060, 2010.##
[16] K. Bashir, T. Xiang, and S. Gong, “Gait representation using flow fields,” in Proc. Brit. Mach. Vis. Conf., pp. 1–11, 2009.##
[17] P. Chaurasia, P. Yogarajah, J. Condell, and G. S. Prasad, “Fusion of Random Walk and Discrete Fourier Spectrum Methods for Gait Recognition,” IEEE Transactions on Human-Machine Systems, vol. 47 , Issue. 6 , Dec. 2017.##
[18] M. Jeevan, N. Jain, M. Hanmandlu, and G. Chetty, “Gait recognition based on gait pal and pal entropy image,” IEEE International Conference on Image Processing, Melbourne, VIC, pp. 4195-4199, 2013.##
[19] J. Rouhi and H. Sadoughi, “Presenting a new spatio-temporal database on the gait and using to recognition people from video images,” in Proc. 12th conference of the Iranian Computer Association, 2006. (In Persian)##
[20] M. Hu, Y. Wang, Z. Zhang, D. Zhang, and J. J. Little, “Incremental Learning for Video-Based Gait Recognition With LBP Flow,” IEEE Transactions on Cybernetics, vol. 43, no. 1, pp. 77-89, Feb. 2013.##
[21] S. Yu, D. Tan, and T. Tan, “A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition,” in Proc. 18th Int. Conf. Pattern Recog, pp. 441–444, 2006.##
Y. Pratheepan, J. Condell, and G. Prasad, “PRWGEI: Poisson random walk based gait recognition,” in Proc. 7th Int. Symp. Image Signal Process. Anal., pp. 662–667, 2011.##